

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CH6PCPED

Course: Process Equipment Design

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions:

1. Answer Unit I and Unit IV are compulsory. Answer any ONE full question from choosing Unit II and Unit III.
2. Missing data, if any, may be suitably assumed & stated.
3. Perry's Chemical Engineers Handbook, IS 4503 and IS 2825 Unfired Pressure Vessel Codebooks are permitted to use.

		UNIT – I	CO	PO	Marks
1	a)	Classify the chemical equipment based on common features which require similar design features.	CO 3	PO4	06
	b)	What is torispherical head? Write the equation used to calculate the thickness of torispherical head.	CO 3	PO4	06
	c)	Explain the general design procedure of process equipment used in chemical industry.	CO 3	PO4	08
		UNIT – II			
2		Design a one shell side pass and two tube side pass shell and tube heat exchanger to cool 1,00,000 kg/h of methyl alcohol from 95°C to 40°C, using water which flows through the tubes with the temperature rise from 25° to 40°C. The tube data are 20 mm OD, 16 mm ID, 4.88 m long (effective length) cupronickel tubes are to be arranged in 1.25 triangular pitch. Design the exchanger and estimate it's the pressure drop. Data: <ul style="list-style-type: none">Conductivity of metal; k_w is 50 W/m² °CAllowable stress for the material is 11.7 kgf/cm².Baffles: 20% cut baffles are to be spacedFouling coefficient for methyl alcohol and water are 5000 and 3000 W/m² °C respectively.Overall coefficient is 600 W/m² °C.			
	a)	Determine the shell side and tube side fluid properties at average temperature.	CO 1	PO2	05
	b)	Determine overall heat transfer coefficient from individual heat transfer coefficient.	CO 2	PO4	20
	c)	Determine the pressure drops at shell side and tube side.	CO 2	PO4	10
	d)	Carry out the mechanical design of the heat exchanger.	CO 2	PO4	15
	f)	Draw a neat front sectional view of STHE. Name at least 10 parts.	CO 4	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

		UNIT - III																											
3		<p>A liquid mixture of benzene toluene is being distilled in a fractionating column at 101.3 k Pa pressure. A sub-cooled liquid feed of 100 kmole/h with composition of 45 mole% benzene (A) and 55 mole% toluene (B) and enters at 327.6 K. A distillate containing 95 mole% benzene and 5 mole% toluene and a bottoms containing 10 mole% benzene and 90 mole% toluene are to be obtained. The amount of liquid is fed back to the column at the top is 4 times the distillate product. Design the distillation column.</p> <p>Data:</p> <ul style="list-style-type: none"> • The average heat capacity of the feed is 159 kJ/kg mole. K • The average latent heat 32,099 kJ/kg moles. <p>The equilibrium data:</p> <table border="1"> <thead> <tr> <th>Temperature (K)</th> <th>353</th> <th>358</th> <th>363</th> <th>367</th> <th>373</th> <th>378</th> <th>384</th> </tr> </thead> <tbody> <tr> <td>x_A</td> <td>1</td> <td>0.780</td> <td>0.580</td> <td>0.450</td> <td>0.258</td> <td>0.13</td> <td>0</td> </tr> <tr> <td>y_A</td> <td>1</td> <td>0.900</td> <td>0.777</td> <td>0.657</td> <td>0.456</td> <td>0.261</td> <td>0</td> </tr> </tbody> </table>	Temperature (K)	353	358	363	367	373	378	384	x_A	1	0.780	0.580	0.450	0.258	0.13	0	y_A	1	0.900	0.777	0.657	0.456	0.261	0			
Temperature (K)	353	358	363	367	373	378	384																						
x_A	1	0.780	0.580	0.450	0.258	0.13	0																						
y_A	1	0.900	0.777	0.657	0.456	0.261	0																						
	a	Calculate the rate of distillate and bottom product in kg moles per hour.	CO2	PO4	10																								
	b	Determine the number of theoretical stages at the operating reflux.	CO2	PO4	20																								
	c	Estimate the minimum number of theoretical stages required at total reflux.	CO2	PO4	05																								
	d	Establish the plate specifications and bubble cap design.	CO2	PO4	15																								
	e	Draw schematic diagram of bubble cap distillation column.	CO4	PO2	10																								
		UNIT - IV																											
4	a	<p>A pressure vessel with internal diameter 1200 mm, made up of stainless steel. Vessel operated with internal pressure of 3 kg/cm². Permissible stress at 150°C is 13 kg/mm². Flanged and dished type of head is fixed to both side of vessel. Estimate the shell thickness and head thickness of the pressure vessel based on the internal pressure</p> <p>Data:</p> <ul style="list-style-type: none"> • External diameter and crown radius of head is 1200 mm. • Knuckle radius of head is 72 mm. • Material of head is stainless steel. 	CO3	PO4	10																								
	b	Pressure vessel of internal diameter 1.5 m operates at 0.05 kg/mm ² . The vessel must be provided with a nozzle 10 cm internal diameter. The nozzle is welded to the shell wall and does not project inside the vessel. Permissible stress of the material is 10.20 kg/mm ² . Corrosion allowance is 1 mm and welded joint efficiency is 85%. Estimate the reinforcement required for the nozzle.	CO3	PO4	10																								
