

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CH6PCPMS

Course: Process Modelling and Simulation

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	UNIT – I			CO	PO	Marks
1	a)	Elucidate the importance of degrees of freedom analysis with a suitable example.		CO1	PO2	05
	b)	Explain the different fundamental laws applied in process modeling with relevant equations.		CO1	PO2	05
	c)	Consider the Continuous Stirred-Tank Reactor (CSTR) where component 'A' reacts irreversibly and at a specific reaction rate k to form product, component 'B'. The reaction is exothermal in nature hence a cooling coil is attached to the CSTR to remove the heat. Apply suitable fundamental laws to develop a mathematical equation for the process.		CO2	PO3	10
		OR				
2	a)	Classify & enlist four applications of process models.		CO1	PO2	10
	b)	Component A reacts irreversibly and at a specific reaction rate k to form product, component B. Write the component balance equations when the reaction (first order) takes place in i) CSTR and ii) PFR. Make necessary assumptions wherever.		CO2	PO3	10
		UNIT – II				
3	a)	Formulate a relation to estimate the differential change in the liquid level of the tank with time for interacting and non-interacting tanks systems. List the assumptions made.		CO 2	PO3	10
	b)	Consider an enzymatic reaction occurring in a perfectly mixed stirred tank reactor. Consider the rate of cell growth (R_1) and rate of substrate consumption (R_2). Formulate a relation to estimate the differential change in substrate concentration with time.		CO 2	PO3	10
		OR				

	4	a)	An irreversible, exothermic reaction is carried out in a single perfectly mixed CSTR. The temperature changes with time in the CSTR system. The reaction is n^{th} order in reactant 'A' and has a heat of reaction λ (J/kg mol of A reacted). To remove the heat of reaction, a cooling jacket surrounds the reactor. Cooling water is added to the jacket and the fluid in jacket is assumed to be perfectly mixed. Formulate a mathematical model for the given case using suitable fundamental laws.	CO 2	PO3	10
		b)	A Newtonian fluid pass through a two perfectly mixed tanks and shown in the figure below. The volume of both the tanks are different and constant. Develop a relationship to estimate the change in temperature in both the tanks. List the assumptions made.	CO 2	PO3	10
UNIT - III						
5	a)	Two concentric cylindrical metallic shells are separated by a solid material. If the two metal surfaces are maintained at different temperatures. Find the steady state temperature distribution within the separating material.	CO3	PO4	08	
	b)	Derive an equation to find the effectiveness of heat transfer through an extended surface of finite length.	CO3	PO4	12	
OR						
6	a)	A steam pipe with inner radius 25 mm and outer radius 50 mm is made of a material with thermal conductivity of 45 W/m·K. If the inner and outer surface temperatures are 300°C and 100°C respectively, calculate the rate of heat loss per meter length of pipe.	CO 3	PO4	08	
	b)	A well-stirred tank contains 500 liters of a liquid initially at 25°C. Steam is passed through a jacket around the tank, maintaining the wall temperature at 95°C. Assuming the tank is perfectly insulated, and the liquid is well-mixed. Formulate the expression for the temperature of the liquid as a function of time.	CO 3	PO4	12	
UNIT - IV						
7	a)	Elucidate the importance features of equation of state models with relevant equations.	CO 3	PO4	08	
	b)	Formulate a mathematical model to predict the behavior of multicomponent flash drum. List the assumption made during the derivation.	CO 3	PO4	12	

OR					
8	a)	Explain the importance of NRTL and Wilson model with relevant equations.	<i>CO3</i>	<i>PO4</i>	08
	b)	Develop a mathematical model to solve an ideal binary distillation column. List all the assumption made and estimate the degrees of freedom for the developed model.	<i>CO3</i>	<i>PO4</i>	12
UNIT – V					
9	a)	Explain the advantages and limitations of different simulation tools used commercially for chemical engineering applications.	<i>CO 6</i>	<i>PO12</i>	10
	b)	Differentiate between modular approach and equation solving approach in simulation.	<i>CO6</i>	<i>PO12</i>	10
OR					
10	a)	Describe the two approaches of simulation in detail.	<i>CO6</i>	<i>PO12</i>	10
	b)	Explain the dynamic simulation and process optimization with Examples.	<i>CO6</i>	<i>PO12</i>	10

B.M.S.C.E. - EVEN SEMESTER 2024-25