

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CH6PCPMS

Course: Process Modelling & Simulation

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	UNIT – I			CO	PO	Marks
	1	a)	Define process modeling and explain its importance in chemical engineering.			
		b)	Why are models needed in chemical engineering? Classify mathematical models used in this field.			
		c)	Component 'C' undergoes an irreversible second-order reaction with component 'D' to form product 'E' at a specific reaction rate k . Write the component balance equations when the reaction occurs in (i) A Continuous Stirred-Tank Reactor (CSTR) and (ii) A Plug Flow Reactor (PFR). Make necessary assumptions wherever needed.	CO2	PO3	08
			UNIT – II			
	2	a)	Develop the mathematical model for a gas-phase pressurized CSTR undergoing a first-order reaction $A \rightarrow B$. Assume ideal gas behavior and constant volume.	CO2	PO3	10
		b)	Formulate a mathematical model for a semi-batch reactor where component A is fed into the reactor at a constant rate F_A , and it undergoes a first-order irreversible reaction $A \rightarrow B$. Assume the volume is changing and the density is constant.	CO2	PO3	10
			OR			
	3	a)	Derive the mathematical model for a batch reactor where a first-order irreversible reaction $A \rightarrow B$ takes place. Assume constant density and provide the component and energy balances.	CO2	PO3	10
		b)	Develop the mathematical model for a non-isothermal jacketed CSTR with a first-order exothermic reaction $A \rightarrow B$. Include both component and energy balances. Assume plug flow condition inside the jacket.	CO2	PO3	10

		UNIT - III			
4	a)	Two concentric cylindrical metallic shells are separated by a solid material. If the two metal surfaces are maintained at different temperatures. Find the steady state temperature distribution within the separating material.	CO 3	PO4	08
	b)	Derive an equation to find the effectiveness of heat transfer through an extended surface of finite length.	CO 3	PO4	12
		UNIT - IV			
5	a)	Develop a mathematical model for a multicomponent flash drum where a liquid stream at high temperature and pressure is flashed into a drum. The pressure is reduced irreversibly at constant enthalpy. Include mass and energy balances along with the vapor-liquid equilibrium relations.	CO 3	PO4	10
	b)	Develop a mathematical model for a binary continuous distillation column. Assume constant molar overflow and negligible heat losses. Include mass and energy balances for both the rectifying and stripping sections.	CO 3	PO4	10
		OR			
6	a)	Explain the role of activity coefficient models with relevant equations used in simulation tools.	CO 3	PO4	10
	b)	Write the equations describing a batch distillation column with hold up used to separate multicomponent mixture. List the assumptions and nomenclature used clearly.	CO 3	PO4	10
		UNIT - V			
7	a)	Differentiate between the simulation and modeling. Explain various simulation tools used in Chemical Engineering with their advantages and limitations.	CO 6	PO12	10
	b)	Explain the dynamic simulation and process optimization with examples.	CO 6	PO12	10
