

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 23CH6PCPMS

Max Marks: 100

Course: Process Modelling and Simulation

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	What is mathematical modelling? Explain the classification of mathematical models in detail.			CO1	PO2	15
		b)	Briefly explain the principles of formulation.			CO1	PO2	05
	OR							
	2	a)	Define modeling, and brief about its importance.			CO1	PO2	06
		b)	Explain briefly the fundamental laws involved in model building.			CO1	PO2	14
	UNIT - II							
	3	a)	Derive the dynamic energy balance for a non-isothermal CSTR with a perfectly mixed cooling jacket. Clearly state all assumptions.			CO3	PO4	10
		b)	Develop the mathematical model for a gas-phase pressurized CSTR undergoing a first-order reaction $A \rightarrow B$. Assume ideal gas behaviour and constant volume.			CO3	PO4	10
	OR							
	4	a)	Explain the modeling of two heated tanks in series. Derive the governing equations for temperature variation in each tank and discuss the impact of heat input.			CO3	PO4	10
		b)	Write the model equations for a bioreactor involving Monod kinetics. Explain how substrate consumption and biomass growth are related. What is the significance of the yield coefficient?			CO3	PO4	10
UNIT - III								
5	a)	Two long concentric cylindrical metallic shells of radii r_1 and r_2 are separated by a solid insulating material. The inner and outer cylindrical surfaces are maintained at constant temperatures T_1 and T_2 , respectively. Develop the steady-state temperature distribution in the radial direction assuming no internal heat generation.			CO3	PO4	10	

	b)	Derive an expression for the effectiveness of heat transfer through a fin (extended surface) of finite length, assuming one-dimensional steady-state conduction, constant thermal conductivity, and negligible heat generation.	CO3	PO4	10
		OR			
6	a)	A closed vessel of total surface area 40 m^2 is heated through this surface by condensing steam at a temperature of 100°C . The vessel is charged with 600 kg of liquid having a heat capacity of 2512 J/kg K at a temperature of 25°C . If the process is controlled by a heat-transfer coefficient of $142 \text{ W/m}^2\text{K}$. Find out the temperature of the liquid after 1 h.	CO3	PO4	05
	b)	Develop a mathematical model for the unsteady-state steam heating of a liquid contained in a perfectly mixed tank. Assume no heat losses, constant steam temperature, and constant properties.	CO3	PO4	15
		UNIT - IV			
7	a)	Develop a mathematical model for a multicomponent adiabatic flash drum in which a high-pressure, high-temperature feed stream is flashed to a lower pressure. Assume steady-state operation, constant molar overflow, and thermodynamic equilibrium between vapor and liquid phases. Write the necessary mass and energy balance equations along with vapor-liquid equilibrium (VLE) relations.	CO 2	PO3	12
	b)	Explain the importance of any three activity co-efficient models in simulating the chemical process with the relevant equations.	CO1	PO2	10
		OR			
8	a)	Write the equations describing an ideal distillation column used to separate binary component mixture. List the assumptions and nomenclature used clearly.	CO2	PO3	10
	b)	Derive the total continuity and energy balance equations for a single-component vaporizer, assuming negligible vapor-phase dynamics. Discuss the assumptions made.	CO2	PO3	10
		UNIT - V			
9	a)	Explain the various tools used in process simulation. Discuss their features, advantages, and limitations. Give at least two examples of commercial simulation software.	CO6	PO12	10
	b)	Differentiate between the Modular Approach and the Equation Solving Approach in process simulation. Highlight their advantages and typical applications.	CO6	PO12	10
		OR			
10	a)	What is flowsheeting in process simulation? Describe its role and importance in modeling complex chemical processes.	CO6	PO12	10
	b)	Explain the concept of dynamic simulation and its applications. How does it differ from steady-state simulation? Discuss its role in process optimization.	CO6	PO12	10
