

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Make-Up Examinations

Programme: B.E.

Branch: Institutional Elective

Course Code: 19CH70EAET

Course: Advances in Energy Technology

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define energy resources and classify them into distinct categories based on their long-term availability.		<i>CO1</i>	<i>PO2</i>	06
		b)	Discuss India's current production and reserves of major fossil fuels such as coal, petroleum and natural gases.		<i>CO2</i>	<i>PO7</i>	08
		c)	Evaluate the need for alternative energy resources in the context of increasing energy demand.		<i>CO1</i>	<i>PO2</i>	06
			UNIT - II				
	2	a)	Determine the solar insolation on 2 nd March by assuming the solar constant $G_{SC} = 1377 \text{ W/m}^2$.		<i>CO3</i>	<i>PO2</i>	05
		b)	Discuss the various components and working principle of flat-plate collector with the aid of labelled diagram.		<i>CO4</i>	<i>PO6</i>	08
		c)	Analyze the advantages and disadvantages of photovoltaic cells as a technology for harnessing solar energy.		<i>CO4</i>	<i>PO6</i>	07
			UNIT - III				
	3	a)	Define the process of pyrolysis and discuss the general procedure for the pyrolysis of pretreated biomass along with a flow diagram.		<i>CO3</i>	<i>PO2</i>	10
		b)	Design the biogas plant considering the availability of 5 cows. Consider an availability of 2 kg dry mass per day. Data given for plant: Retention time = 20 days, $T = 30^{\circ}\text{C}$, Biogas yield = 0.24 m^3/kg , Burner efficiency = 60 %, Fraction of CH_4 in biogas = 0.8, Heat of combustion of methane = 28 MJ/m^3 & density of dry matter = 50 kg/m^3 . Calculate (i) The volume of biogas plant, and (ii) Power available from the plant.		<i>CO5</i>	<i>PO3</i>	10
			OR				
	4	a)	Explain the refuse-derived fuel (RDF) for energy recovery from waste along with a schematic diagram.		<i>CO6</i>	<i>PO2</i>	10

	b)	What are the three different types of geothermal power plants? Explain the working principle of any one geothermal power plant along with diagram.	CO3	PO2	10
		UNIT - IV			
5	a)	Mathematically prove that power available in the wind energy, which is proportional to cube of wind speed.	CO3	PO2	08
	b)	Determine the diameter of a wind turbine required to produce an output of 6 kW, given a wind speed of 9 m/s and a rotor speed of 120 rpm. Assume power coefficient = 0.4, mechanical transmission efficiency = 0.9, and electrical transmission efficiency = 0.9.	CO5	PO3	12
		OR			
6	a)	Mathematically prove that the maximum theoretical power extracted by a wind turbine can't be more than 0.59 times the wind power available.	CO5	PO3	12
	b)	Explain the working principle of hydropower plant with a neat labelled diagram.	CO3	PO2	08
		UNIT - V			
7	a)	Explain the working principle of proton-exchange membrane fuel cell (PEMFC).	CO3	PO2	08
	b)	Classify fuel cell into different types based on their electrolyte, operating temperature, and fuel source.	CO3	PO2	07
	c)	Discuss the various potential applications of fuel cell technology in different sectors.	CO6	PO2	05

B.M.S.C.E. -