

B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Semester: VII

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 19CH7DCBCE

Max Marks: 100

Course: Biochemical Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1. a) Give the classification of microorganisms belonging to the kingdom of protist. Discuss about their structure, reproduction cycle and applications **10**
- b) Describe Watson and Crick model of DNA structure. What is DNA replication? Explain its importance. **10**

UNIT - II

2. a) Derive M-M equation for single substrate enzyme catalyzed reaction stating assumptions and steady state approach. State the assumptions and limitations of equilibrium approach. **10**
- b) At room temperature sucrose is hydrolyzed by the catalytic action of the enzyme. Initial sucrose concentration is 1 M/ L and an enzyme concentration 0.01mM/L. Analysis of samples at regular intervals is as follows.

Time, min	1	2	3	4	5	6	7	8	9	10	11
Substrate, mM/L	0.8 4	0.6 8	0.5 3	0.3 8	0.2 7	0.1 6	0.0 9	0.0 4	0.01 8	0.00 6	0.002 5

Check whether the reaction follows MM model and if fits the model, evaluate turn over number.

OR

3. a) Explain the methods for the evaluation of parameters in M-M equation. **10**
- b) The following data have been obtained with a fixed initial enzyme concentrations for an enzyme -catalyzed reaction. **10**

[S], g/L	20	10	6.7	5.0	4.4	3.2
[E] ₀ = 0.021 g/L	1.14	0.87	0.7	0.59	0.5	0.44

Evaluate k_2 and Michaelis-Menten constants using Langmuir plot.

UNIT - III

4. a) Explain the reversible competitive inhibition. Obtain the rate expression for the inhibition. How are the parameters determined? **10**

- b) Discuss on the effect of temperature on activity of enzymes.

10

OR

5. a) Enzyme as well the enzyme-substrate complexes are inhibited at the second active site available on the enzyme during an enzymatic reaction. State whether inhibitor has structural resemblance with substrate or not. Prove that the V_{max} of such an inhibition process is lower than reaction in the absence of inhibitor. State the assumptions made.
- b) The hydrolysis of urea by urease is an only a partially understood reaction and shows inhibition. Data for the hydrolysis of the reaction are given below.

10

10

[S]= 0.2M	1/r L min/mol	0.22	0.33	0.51	0.76	0.88	1.1
	[I] mol	0	0.0012	0.0027	0.0044	0.0061	0.008
[S] = 0.02M	1/r L min/mol	0.68	1.02	1.5	1.83	2.04	2.72
	[I] mol	0.0	0.0012	0.0022	0.0032	0.0037	0.0044

UNIT - IV

6. a) Describe the transient growth kinetics of microorganisms along with the governing equations.

12

- b) Define dilution rate and yield coefficient. Prove that $D=F/V_R$ for a CSTR.

08

UNIT - V

7. a) With the help of neat flow sheet, explain the components of a typical aseptic aerobic fermentation process.

10

- b) Explain the principle of freeze drying.

05

- c) Write on merits and demerits of affinity chromatography.

05
