

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 19CH7DCBCE

Course: Biochemical Engineering

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I								CO	PO	Marks																
1	a)	How are the bacteria differentiated? Draw the schematic of bacteria and label.								CO1	PO2	5																
	b)	Differentiate between the prokaryotes and eukaryotes.								CO1	PO2	6																
	c)	Explain the structure and typical properties of nucleotides.								CO2	PO2	9																
		UNIT - II																										
2	a)	With the help of kinetic models, describe the mechanism of enzymatic reactions.								CO5	PO4	6																
	b)	How are the proteins formed? Explain the structure of proteins based on amino acids with their features and suitable examples.								CO4	PO2	6																
	c)	The initial rate of enzyme-catalyzed reaction at various substrate concentrations are as tabulated.								CO5	PO4	8																
		<table border="1"> <tr> <td>$S \times 10^4$ mol/L</td><td>41</td><td>9.5</td><td>5.2</td><td>1.03</td><td>0.49</td><td>0.106</td><td>0.051</td></tr> <tr> <td>$v \times 10^4$ mol/L min</td><td>177</td><td>173</td><td>125</td><td>106</td><td>80</td><td>67</td><td>43</td></tr> </table> Evaluate the MM constants using the Lineweaver Burk Plot.								$S \times 10^4$ mol/L	41	9.5	5.2	1.03	0.49	0.106	0.051	$v \times 10^4$ mol/L min	177	173	125	106	80	67	43			
$S \times 10^4$ mol/L	41	9.5	5.2	1.03	0.49	0.106	0.051																					
$v \times 10^4$ mol/L min	177	173	125	106	80	67	43																					
		OR																										
3	a)	Derive the rate equation for a single substrate enzyme catalyzed reaction using the Brigg's-Halden approach. State the assumptions made.								CO5	PO4	10																

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	3	b)	<p>The following data have been obtained for two different initial enzyme concentrations (Case 1 and Case 2) for an enzyme-catalyzed reaction. Evaluate Michaelis-Menten constants and turn over numbers using the Langmuir plot Method.</p> <p>Case 1:</p> <p>$[E]_0 = 0.021 \text{ g/L}$</p> <table border="1"> <thead> <tr> <th>$[S]$, g/L</th><th>20</th><th>10</th><th>6.7</th><th>5</th><th>3.2</th><th>2.9</th><th>2.5</th></tr> </thead> <tbody> <tr> <th>v, g/L min</th><td>1.14</td><td>0.87</td><td>0.7</td><td>0.59</td><td>0.44</td><td>0.39</td><td>0.35</td></tr> </tbody> </table> <p>Case 2:</p> <p>$[E]_0 = 0.00935 \text{ g/L}$</p> <table border="1"> <thead> <tr> <th>$[S]$, g/L</th><th>20</th><th>10</th><th>6.7</th><th>5</th><th>4.4</th><th>-</th><th>-</th></tr> </thead> <tbody> <tr> <th>v, g/L min</th><td>0.67</td><td>0.51</td><td>0.41</td><td>0.34</td><td>0.29</td><td>-</td><td>-</td></tr> </tbody> </table>	$[S]$, g/L	20	10	6.7	5	3.2	2.9	2.5	v, g/L min	1.14	0.87	0.7	0.59	0.44	0.39	0.35	$[S]$, g/L	20	10	6.7	5	4.4	-	-	v, g/L min	0.67	0.51	0.41	0.34	0.29	-	-	CO5	PO4	10
$[S]$, g/L	20	10	6.7	5	3.2	2.9	2.5																															
v, g/L min	1.14	0.87	0.7	0.59	0.44	0.39	0.35																															
$[S]$, g/L	20	10	6.7	5	4.4	-	-																															
v, g/L min	0.67	0.51	0.41	0.34	0.29	-	-																															
			UNIT - III																																			
4	a)		Explain the mechanism of uncompetitive inhibition. Derive the expression for uncompetitive inhibition.	CO4	PO2	10																																
	b)		<p>A pesticide inhibits the activity of a particular enzyme E, which can be therefore employed to determine the presence of an inhibitor in an unknown sample. During the assay in the lab, the following data is obtained.</p> <table border="1"> <thead> <tr> <th>$[S]$, mol /L</th><th>0.00033</th><th>0.0005</th><th>0.00067</th><th>0.00165</th><th>0.00221</th></tr> </thead> <tbody> <tr> <th>No inhibitor v, mol/L min</th><td>56</td><td>71</td><td>88</td><td>129</td><td>149</td></tr> <tr> <th>With inhibitor v, mol/L min</th><td>37</td><td>47</td><td>61</td><td>103</td><td>125</td></tr> </tbody> </table> <p>i. Is the pesticide competitive or non-competitive? ii. Find V_{max}, K_M and K_I</p>	$[S]$, mol /L	0.00033	0.0005	0.00067	0.00165	0.00221	No inhibitor v, mol/L min	56	71	88	129	149	With inhibitor v, mol/L min	37	47	61	103	125	CO5	PO4	10														
$[S]$, mol /L	0.00033	0.0005	0.00067	0.00165	0.00221																																	
No inhibitor v, mol/L min	56	71	88	129	149																																	
With inhibitor v, mol/L min	37	47	61	103	125																																	
			OR																																			
5	a)		<p>What is meant by reversible noncompetitive inhibition? Explain the mechanism during inhibition and also show that</p> <p>Rate of the reaction, $V = V_{max \text{ app}}[S]/[K'_M + [S]]$</p> <p>State the assumptions made.</p>	CO5	PO4	10																																
	b)		What is the significance of immobilizing enzymes? Explain kinetics of immobilization with diffusional limitations.	CO4	PO2	10																																
			UNIT - IV																																			
6	a)		Derive an equation for the biomass production in a chemostat. Deduce the equation starting from the substrate balance to find the maximum specific growth rate of biomass.	CO3	PO4	10																																
	b)		A new strain of yeast is being considered for biomass production. The following data were obtained using a chemostat.	CO3	PO4	10																																

		<p>An influent substrate concentration of 800mg/L and an excess of oxygen were used at a pH of 5.5 and T=35°C .</p> <p>Using the following data, calculate K_d and $Y^M_{X/S}$.</p> <table border="1"> <tr> <td>Dilution rate</td><td>0.1</td><td>0.2</td><td>0.3</td><td>0.4</td><td>0.5</td><td>0.6</td><td>0.7</td></tr> <tr> <td>Carbon concentration, mg/L</td><td>16.7</td><td>33.5</td><td>59.4</td><td>101</td><td>169</td><td>298</td><td>702</td></tr> <tr> <td>Cell concentration, mg/L</td><td>366</td><td>407</td><td>408</td><td>404</td><td>371</td><td>299</td><td>59</td></tr> </table>	Dilution rate	0.1	0.2	0.3	0.4	0.5	0.6	0.7	Carbon concentration, mg/L	16.7	33.5	59.4	101	169	298	702	Cell concentration, mg/L	366	407	408	404	371	299	59		
Dilution rate	0.1	0.2	0.3	0.4	0.5	0.6	0.7																					
Carbon concentration, mg/L	16.7	33.5	59.4	101	169	298	702																					
Cell concentration, mg/L	366	407	408	404	371	299	59																					
		UNIT - V																										
7	a)	Explain the mechanism of affinity chromatography. What are the limitations and applications of bio-affinity chromatography?	<i>CO6</i>	<i>PO7</i>																								
	b)	Discuss different reactor designs used in the fermentation industry.	<i>CO3</i>	<i>PO4</i>																								
	c)	What is the importance of cell disruption and freeze-drying in the bioprocess industry? Explain the methods of cell disruption and working principle of freeze drying.	<i>CO6</i>	<i>PO7</i>																								
