

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 19CH7DCBCE

Course: Biochemical Engineering

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	UNIT - I			CO	PO	Marks
	1	a)	With neat diagram, explain the structure of prokaryotic and eukaryotic cells.			
		b)	Explain the structure of bacteria. Discuss the process of gram reaction to bacteria with suitable examples.	CO1	PO2	08
		c)	What are the monomers involved in the Deoxyribonucleic acid polymer? Explain the double helix of a Deoxyribonucleic acid.	CO2	PO2	06
		OR				
	2	a)	Brief about the significance of bioprocess engineering and give its application in various domain.	CO1	PO2	08
		b)	Explain in detail the classification of microorganisms.	CO1	PO2	12
UNIT - II						
	3	a)	Explain how enzyme catalyzed reaction is different from chemical reaction? Describe the dependency of enzyme functionality with respect to pH, temperature and shear force.	CO4	PO2	10
		b)	When glucose is converted to fructose by glucose isomerase, the slow product formation step is also reversible as: $S + E \leftrightarrow ES$; where the rate constants are k_1 and k_2 respectively $ES \leftrightarrow P + E$; here the rate constants are k_3 and k_4 respectively Derive the rate equation considering Michaelis Menten and Briggs Haldane methods.	CO5	PO4	10
		OR				

	4	a)	Explain the enzyme substrate complexon for the enzyme catalyzed reaction. How does it leads to the basic expression for rate of enzyme catalyzed reaction?	CO5	PO4	8																		
	b)		The data obtained for two different enzyme concentration for enzyme catalyzed reaction:	CO5	PO4	12																		
Using Hanes-Woolf method, find i) k_M ii) Maximum rate for two different initial enzyme concentration.																								
			UNIT - III																					
5	a)		From equilibrium approach, show that in the competitive enzyme inhibition the rate constant gets changed due to presence of inhibitors.	CO5	PO4	08																		
	b)		In the following reaction of enzyme and substrate in presence of inhibitor, determine the rate expression for product formation.	CO5	PO4	12																		
$E + S \xrightleftharpoons{K_M} ES \xrightarrow{K_2} E + P$ $E + I \xrightleftharpoons{K_I} EI + S \rightleftharpoons ESI$ $ES + I \xrightleftharpoons{K_M} ESI$																								
			OR																					
6	a)		The initial reaction rate of hydrolysis of a substrate by enzyme in absence and presence of inhibitor of 1.5×10^{-7} mol/L and the following data is obtained:	CO5	PO4	12																		
			<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>S mol/L</th> <th>Initial reaction rate (no inhibitor)</th> <th>Initial reaction rate (Inhibitor)</th> </tr> </thead> <tbody> <tr> <td>0.0032</td> <td>0.111</td> <td>0.059</td> </tr> <tr> <td>0.0049</td> <td>0.148</td> <td>0.071</td> </tr> <tr> <td>0.0062</td> <td>0.143</td> <td>0.091</td> </tr> <tr> <td>0.0080</td> <td>0.166</td> <td>0.111</td> </tr> <tr> <td>0.0095</td> <td>0.2</td> <td>0.125</td> </tr> </tbody> </table>	S mol/L	Initial reaction rate (no inhibitor)	Initial reaction rate (Inhibitor)	0.0032	0.111	0.059	0.0049	0.148	0.071	0.0062	0.143	0.091	0.0080	0.166	0.111	0.0095	0.2	0.125			
S mol/L	Initial reaction rate (no inhibitor)	Initial reaction rate (Inhibitor)																						
0.0032	0.111	0.059																						
0.0049	0.148	0.071																						
0.0062	0.143	0.091																						
0.0080	0.166	0.111																						
0.0095	0.2	0.125																						

		i. Is it a case of competitive or non-competitive inhibition? ii. Evaluate Michaelis Menten kinetic parameters in the presence of inhibitor by Langmuir Plot.			
	b)	Explain the chemical method for enzyme immobilization.	CO4	PO2	08
		UNIT - IV			
7	a)	Explain the details of Monod growth kinetics. Also explain wash out in the said growth kinetics.	CO5	PO4	10
	b)	With a neat illustration, demonstrate the phases of cell growth.	CO3	PO4	04
	c)	Derive that the cell number doubling time is inversely proportional to the specific growth rate.	CO3	PO4	06
		OR			
8	a)	Derive the expression to obtain for specific growth rate at maximum cell output.	CO3	PO4	14
	b)	What is washout condition in growth kinetics? Explain.	CO3	PO4	6
		UNIT - V			
9	a)	Explain with diagram, the operation of stirred tank aseptic fermenter.	CO6	PO7	10
	b)	Explain the following downstream operations: i) Freeze drying ii) Affinity chromatography	CO6	PO7	10
		OR			
10	a)	Elaborate on aseptic aerobic fermenter operation.	CO6	PO7	10
	b)	Brief on medium formulation in bioreactor.	CO6	PO7	05
	c)	Explain the cell disruption using French press.	CO6	PO7	05
