

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 22CH7PCBCE

Max Marks: 100

Course: Biochemical Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks																	
1	a)	Discuss the role of chemical engineers in bioprocess industries.		<i>CO1</i>	<i>PO8</i>	05																	
	b)	Draw a neat figure of the eukaryotic cell and name all parts.		<i>CO1</i>	<i>PO8</i>	05																	
	c)	Classify microorganisms based on structure and mention their characteristics.		<i>CO2</i>	<i>PO2</i>	10																	
			OR																				
2	a)	How are microorganisms classified based on the reproductive cycle? Explain.		<i>CO1</i>	<i>PO8</i>	10																	
	b)	Elucidate the concept of Whittaker's five-kingdom. List the microorganisms in each category.		<i>CO1</i>	<i>PO8</i>	10																	
			UNIT - II																				
3	a)	What is pKa? Explain the effects of shear, temperature and pH on enzyme functionally?		<i>CO2</i>	<i>PO2</i>	10																	
	b)	Explain the enzyme nomenclature according to enzyme commission.		<i>CO2</i>	<i>PO2</i>	10																	
			OR																				
4	a)	The following data have been obtained for two different initial enzyme concentrations for an enzyme-catalyzed reaction.		<i>CO3</i>	<i>PO4</i>	10																	
		<table border="1"> <thead> <tr> <th>$v([E_0] = 0.015 \text{ g/L})$ (g/L min)</th> <th>[S] (g/L)</th> </tr> </thead> <tbody> <tr><td>1.14</td><td>20.0</td></tr> <tr><td>0.87</td><td>10.0</td></tr> <tr><td>0.70</td><td>6.7</td></tr> <tr><td>0.59</td><td>5.0</td></tr> <tr><td>0.50</td><td>4.0</td></tr> <tr><td>0.44</td><td>3.3</td></tr> <tr><td>0.39</td><td>2.9</td></tr> <tr><td>0.35</td><td>2.5</td></tr> </tbody> </table>	$v([E_0] = 0.015 \text{ g/L})$ (g/L min)	[S] (g/L)	1.14	20.0	0.87	10.0	0.70	6.7	0.59	5.0	0.50	4.0	0.44	3.3	0.39	2.9	0.35	2.5			
$v([E_0] = 0.015 \text{ g/L})$ (g/L min)	[S] (g/L)																						
1.14	20.0																						
0.87	10.0																						
0.70	6.7																						
0.59	5.0																						
0.50	4.0																						
0.44	3.3																						
0.39	2.9																						
0.35	2.5																						
		i. Find K_m and k_2																					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		ii. Find V_m for $[E_0] = 0.015$ g/L. Use Hanes-Woolf plot.																												
	b)	Explain the lock and key theory for the enzyme-substrate complex with suitable example.	CO3	PO4	10																									
		UNIT - III																												
5	a)	Mention the types of enzyme inhibition kinetic effects. Briefly elucidate the competitive and non-competitive inhibition.	CO5	PO4	10																									
	b)	What is enzyme immobilization? Explain the methods of immobilization.	CO5	PO4	10																									
		OR																												
6	a)	Develop a model for uncompetitive inhibition and state all assumptions and draw the plots.	CO5	PO4	10																									
	b)	What is substrate inhibition? Derive the model for the same. State all assumptions and draw the plot.	CO5	PO4	10																									
		UNIT - IV																												
7	a)	A new strain of yeast is being considered for biomass production. The following data were obtained using a chemostat. An influent substrate concentration of 800 mg/L and an excess of oxygen were used at a pH of 5.5 and $T = 35^\circ\text{C}$. Calculate $Y^M_{X/S}$, m_s , k_d , μ_m , and K_s using the following data.	<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Dilution rate (h^{-1})</td> <td>0.1</td> <td>0.2</td> <td>0.3</td> <td>0.4</td> <td>0.5</td> <td>0.6</td> <td>0.7</td> </tr> <tr> <td>Carbon concentration (mg/L)</td> <td>16.7</td> <td>33.5</td> <td>59.4</td> <td>101</td> <td>169</td> <td>298</td> <td>702</td> </tr> <tr> <td>Cell concentration (mg/L)</td> <td>366</td> <td>407</td> <td>408</td> <td>404</td> <td>371</td> <td>299</td> <td>59</td> </tr> </table>	Dilution rate (h^{-1})	0.1	0.2	0.3	0.4	0.5	0.6	0.7	Carbon concentration (mg/L)	16.7	33.5	59.4	101	169	298	702	Cell concentration (mg/L)	366	407	408	404	371	299	59	CO5	PO4	16
Dilution rate (h^{-1})	0.1	0.2	0.3	0.4	0.5	0.6	0.7																							
Carbon concentration (mg/L)	16.7	33.5	59.4	101	169	298	702																							
Cell concentration (mg/L)	366	407	408	404	371	299	59																							
	b)	What is the logistic equation?																												
		OR																												
8	a)	Discuss the importance of the Monod equation with respect to substrate-limited growth.	CO4	PO4	10																									
	b)	With a neat schematic diagram, explain the working of an ideal chemostat. Show that $\mu_g = D$ for the chemostat.	CO6	PO7	10																									
		UNIT - V																												
9	a)	Explain the sterilization process used for the control of microorganisms.	CO6	PO7	10																									
	b)	Explain in detail the mechanical methods and non-mechanical methods of cell disruption.	CO6	PO7	10																									
		OR																												
10	a)	Explain the mechanism of affinity chromatography. What are the limitations and applications of bio-affinity chromatography?	CO6	PO7	06																									
	b)	Discuss how freeze-drying is carried out.	CO6	PO7	06																									
	c)	Explain fermentation technology with the essential requirements of a bioreactor.	CO6	PO7	08																									

REAPPEAR EXAMS 2024-25