

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 22CH7PCBCE

Max Marks: 100

Course: Biochemical Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks														
1	a)	Enumerate on the role of chemical engineers in bioprocess industry.	<i>CO1</i>	<i>PO8</i>	10														
	b)	Enumerate on classification of microorganisms based on their structure.	<i>CO1</i>	<i>PO8</i>	10														
OR																			
2	a)	How are the microorganisms classified under reproduction cycle?	<i>CO1</i>	<i>PO8</i>	10														
	b)	Outline the general production of enzymes in bioprocess industries with two examples.	<i>CO1</i>	<i>PO8</i>	10														
UNIT - II																			
3	a)	What are proteins? Enumerate on their structure.	<i>CO1</i>	<i>PO8</i>	12														
	b)	Discuss in brief about enzyme nomenclature.	<i>CO3</i>	<i>PO4</i>	08														
OR																			
4	a)	Derive Michaelis-Menten equation considering a simple enzyme kinetics with one substrate stating all the assumptions	<i>CO4</i>	<i>PO4</i>	10														
	b)	Initial rates of an enzyme-catalyzed reaction for various substrate concentrations are listed below.	<i>CO4</i>	<i>PO4</i>	10														
<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>$S, (\text{mol/L})$</td> <td>$v, \text{mol}/(\text{L} \cdot \text{min}) \times 10^6$</td> </tr> <tr> <td>$4.1 \times 10^{-3}$</td> <td>177</td> </tr> <tr> <td>9.5×10^{-4}</td> <td>173</td> </tr> <tr> <td>5.2×10^{-4}</td> <td>125</td> </tr> <tr> <td>1.03×10^{-4}</td> <td>106</td> </tr> <tr> <td>4.9×10^{-5}</td> <td>80</td> </tr> <tr> <td>1.06×10^{-5}</td> <td>67</td> </tr> <tr> <td>5.1×10^{-6}</td> <td>43</td> </tr> </table>			$S, (\text{mol/L})$	$v, \text{mol}/(\text{L} \cdot \text{min}) \times 10^6$	4.1×10^{-3}	177	9.5×10^{-4}	173	5.2×10^{-4}	125	1.03×10^{-4}	106	4.9×10^{-5}	80	1.06×10^{-5}	67	5.1×10^{-6}	43	
$S, (\text{mol/L})$	$v, \text{mol}/(\text{L} \cdot \text{min}) \times 10^6$																		
4.1×10^{-3}	177																		
9.5×10^{-4}	173																		
5.2×10^{-4}	125																		
1.03×10^{-4}	106																		
4.9×10^{-5}	80																		
1.06×10^{-5}	67																		
5.1×10^{-6}	43																		
Evaluate v_{max} and K_m using Lineweaver-Burk plot.																			
UNIT - III																			
5	a)	Derive an inhibition model for the enzymatic reaction in which the substrate and inhibitor are always competing for the active sites. State all assumptions.	<i>CO5</i>	<i>PO4</i>	10														

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Derive an expression for enzymatic reaction in which the substrate and inhibitor are non-competitive	CO5	PO4	10												
		OR															
6	a)	Experimental data on hydrolysis of starch with α amylase is given in the table below.	CO5	PO4	12												
		<table border="1"> <thead> <tr> <th>Inhibitor</th> <th>Inhibitor concentration, mg/ml</th> <th>Substrate concentration mg/ml</th> <th>Relative hydrolysis velocity</th> </tr> </thead> <tbody> <tr> <td>None</td> <td>0</td> <td>12.56 9 6.33 4.28 2.34 1.00</td> <td>101 92.4 82.7 70.9 65 28.8</td> </tr> <tr> <td>Maltose</td> <td>12.7</td> <td>10 5.26 3.33 1.89 1.67</td> <td>77 62.5 51.4 37 34.2</td> </tr> </tbody> </table> <p>Determine MM constant k_m and type of inhibition</p>	Inhibitor	Inhibitor concentration, mg/ml	Substrate concentration mg/ml	Relative hydrolysis velocity	None	0	12.56 9 6.33 4.28 2.34 1.00	101 92.4 82.7 70.9 65 28.8	Maltose	12.7	10 5.26 3.33 1.89 1.67	77 62.5 51.4 37 34.2			
Inhibitor	Inhibitor concentration, mg/ml	Substrate concentration mg/ml	Relative hydrolysis velocity														
None	0	12.56 9 6.33 4.28 2.34 1.00	101 92.4 82.7 70.9 65 28.8														
Maltose	12.7	10 5.26 3.33 1.89 1.67	77 62.5 51.4 37 34.2														
	b)	Explain enzyme immobilization with examples	CO5	PO4	08												
		UNIT - IV															
7	a)	Enumerate on transient growth kinetics of bioreactors.	CO6	PO7	12												
	b)	Discuss on quantification of growth kinetics.	CO4	PO4	08												
		OR															
8	a)	Discuss in detail about Monod growth kinetics.	CO4	PO4	12												
	b)	What do you mean by washout condition in bioreactor? Explain	CO6	PO7	08												
		UNIT - V															
9	a)	Discuss in detail about aseptic aerobic fermentation process.	CO4	PO4	12												
	b)	What is sterilization? Briefly describe the same for bioprocess equipment.	CO4	PO4	08												
		OR															
10	a)	Elaborate on chromatography technique used in bioprocess industries.	CO6	PO7	12												
	b)	Discuss on freeze drying methods used in biotechnology with any one example.	CO6	PO7	08												
