

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 22CH7PCCTN

Max Marks: 100

Course: Chemical Technology

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	With a neat process flow diagram, explain the coking of coal.			<i>CO1</i>	<i>PO2</i>	10
		b)	Explain with a neat flow sheet, the conventional Linde-Frankl process for producing low purity oxygen.			<i>CO2</i>	<i>PO2</i>	10
			OR					
	2	a)	Draw the schematic sketches of the following unit operations with comments.			<i>CO1</i>	<i>PO2</i>	05
		i.	Fluidized bed reactor					
		ii.	Wet scrubbing system					
		iii.	Plate and Frame Filter Press					
		iv.	Multiple Effect Evaporator and					
		v.	Bag Filter.					
		b)	Explain the liquefied petroleum gas production process adopted in the industry. Draw a neat PFD and identify the mass transfer operations involved in the process.			<i>CO2</i>	<i>PO2</i>	10
		c)	What are the constituents of petroleum?			<i>CO1</i>	<i>PO2</i>	05
			UNIT - II					
	3	a)	With the help of a neat process flow diagram, explain the synthesis of ammonia by Haber-Bosch process mention the major engineering problems.			<i>CO3</i>	<i>PO7</i>	10
		b)	Why is DCDA process advantageous over contact process for sulfuric acid production? Discuss the modern DCDA process with a flow sheet and the major engineering problems.			<i>CO3</i>	<i>PO7</i>	10
			OR					

	4	a)	Explain with a process flow sheet and reactions the production of nitric acid by ammonia oxidation process (Montecatini intermediate pressure process).	CO4	PO10	10
		b)	Mention the uses of Phosphoric acid. Discuss its production by HCL leaching method with major engineering problems.	CO4	PO10	10
			UNIT - III			
	5	a)	Illustrate the vegetable oil extraction with a neat PFD and the functional roles of unit operations and process.	CO4	PO10	10
		b)	Explain the manufacturing of soaps, fatty acids and glycerin with a neat flow diagram and reactions. What are industrial and pharmaceutical uses of glycerin?	CO3	PO7	10
			OR			
	6	a)	With a neat flow diagram, explain the hydrogenation of vegetable oil.	CO3	PO7	10
		b)	Write the material balance with by products for sugar production considering basis 1 ton sugarcane using simple block diagram.	CO4	PO10	10
			UNIT - IV			
	7	a)	With a neat flow sheet, explain the Butadiene Styrene rubber production process.	CO3	PO7	10
		b)	With the help of relevant reactions and process flow diagram, explain the Sulfate (Kraft) Pulping Process.	CO3	PO7	10
			OR			
	8	a)	With a neat process flow diagram and relevant reactions, elucidate the production of ethyl alcohol by fermentation process.	CO4	PO2	10
		b)	Explain with a neat block diagram and reaction production of Poly vinyl chloride (PVC) using suspension and emulsion polymerization.	CO4	PO2	10
			UNIT - V			
	9	a)	What are the constituents of paint? Classify paints based on applications.	CO4	PO2	10
		b)	What are bio-fertilizers? Which are the microbes are used as biofertilizers? What are their advantages.	CO4	PO2	10
			OR			
	10	a)	Explain with a neat process flow sheet, the production of urea from ammonia carbamate.	CO3	PO7	10
		b)	What are NPK fertilizers? Explain with the neat block diagram the production of NPK using Integrated Nitro-phosphate Process	CO3	PO7	10
