

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 22CH7PELC3

Max Marks: 100

Course: Recycle and Reuse of Waste Materials for Sustainable Development

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Discuss the differences between physical treatment and sustainable treatment for future sustainability.	<i>CO 1</i>	<i>PO2</i>	10
	b)	What is the difference between recycling and material recovery in waste management?	<i>CO 3</i>	<i>PO3</i>	10
OR					
2	a)	Explain on fluidized-bed incinerator. Enlist the advantage and disadvantages of fluidized bed incinerator.	<i>CO 2</i>	<i>PO1</i>	12
	b)	Is the traditional landfilling process sustainable? Justify the statement with suitable reasoning.	<i>CO 3</i>	<i>PO3</i>	08
UNIT - II					
3	a)	Elucidate on obstacles for cleaner production and solutions in industries.	<i>CO 1</i>	<i>PO2</i>	10
	b)	Discuss the methodology followed for the cleaner production opportunity assessment.	<i>CO 2</i>	<i>PO1</i>	10
OR					
4	a)	Write various technique involved in cleaner production process.	<i>CO 1</i>	<i>PO 2</i>	12
	b)	Explain the cleaner production techniques applied for conservation of water and energy in preserved food companies.	<i>CO 1</i>	<i>PO 2</i>	08
UNIT - III					
5	a)	Explain the environmental impacts of solid waste recycling with suitable example.	<i>CO 3</i>	<i>PO 3</i>	10
	b)	With a neat flow diagram describe plastic waste recycling process.	<i>CO 5</i>	<i>PO 7</i>	10
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	6	a)	Elucidate with a neat flow diagram the steps for recycling of metal and glass containers.	CO 3	PO 3	10
		b)	Explain the steps for paper waste recycling process.	CO 5	PO 7	10
UNIT - IV						
	7	a)	Discuss different alternatives to utilize the on-site recycling of bypass dust in cement industry. Can cement industry approach cradle-to-cradle system?	CO 3	PO3	12
		b)	Explain about dry slag granulation with neat dry slag granulator.	CO 5	PO7	08
OR						
	8	a)	Explain about aluminum smelter with neat smelter diagram.	CO 4	PO 6	12
		b)	Describe the traditional sugar mill process and flow diagram used in Egypt for sugar manufacturing.	CO 3	PO 3	08
UNIT - V						
	9	a)	Illustrate the significance of capital costs involved in starting a waste management facility.	CO 4	PO11	10
		b)	Explain the different types of financing facilities available for waste management system for sustainable development.	CO 6	PO12	10
OR						
	10	a)	Explain the process to estimate the required capital and operating cost for a waste management facility.	CO 4	PO11	10
		b)	Elucidate on scope and magnitude of waste management duties and responsibilities for sustainable development.	CO 6	PO12	10
