

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: I

Branch: Computer Science Engineering Stream

Duration: 3 hrs.

Course Code: 22CY1BSCCS

Max Marks: 100

Course: Applied Chemistry for CSE Stream

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain the concept of secondary reference electrodes and describe the construction and working of a calomel electrode with a labeled diagram.	CO1	PO1	7
		b)	Define CPR. Calculate the corrosion penetration rate (CPR) in mils per year (mpy) and millimeters per year (mmpy) for a brass sheet exposed to air near the ocean. Given, area of the brass sheet: 400 in ² , weight loss due to corrosion: 375 g, density of the brass sheet: 8.73 g/cm ³ , exposure time: 2 years, K: 534.	CO2	PO2	7
		c)	Predict the effect of the following factors on the rate of corrosion, providing suitable examples: (i) Electrode potential difference (ii) Relative anodic and cathodic areas	CO2	PO2	6
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	What are concentration cells? A spontaneous galvanic cell, M/M ⁿ⁺ (0.03 M)/M ⁿ⁺ (0.064 N)/M develops an EMF of 0.013 V at 25 °C. Calculate the valency of metal.	CO2	PO2	7
		b)	Outline the principle of corrosion control by cathodic protection and discuss the methods.	CO3	PO7	7
		c)	Explain the electrochemical theory of corrosion by taking iron as example.	CO1	PO1	6
UNIT - II						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	Explain why the gross calorific value (GCV) of a fuel is higher than its net calorific value (NCV). Calculate GCV and NCV of a fuel, on burning 0.85 g of a fuel in a bomb calorimeter, the temperature of 2.35 kg of water raised from 23.5 °C to 28.5 °C. The water equivalent of calorimeter and	CO2	PO2	7

		latent heat of steam 0.45 kg and 2454 kJ/kg respectively. Specific heat of water is 4.187 kJ/kg/°C and the fuel contains 2.5% hydrogen.			
	b)	Describe the construction and electrochemical reactions of LiCoO ₂ battery during discharging. Energy density of Li ion battery is high, justify.	CO3	PO7	7
	c)	Describe the construction and working of silicon based photovoltaic cells. Highlight its advantages.	CO3	PO7	6
		OR			
4	a)	Explain the process of petrol reformation, including the necessary reactions and conditions. Justify the importance of petrol reformation.	CO1	PO1	7
	b)	Provide an overview of (i) biodiesel production and (ii) hydrogen production.	CO3	PO7	7
	c)	Elaborate on the following battery characteristics: (i) capacity (ii) voltage and (iii) cycle life.	CO1	PO1	6
		UNIT - III			
5	a)	Define glass transition temperature (T _g) and explain its significance in polymer science. Choose two factors and provide a clear and concise explanation of how each factor affects the T _g of a polymer.	CO1	PO1	7
	b)	In a polymer sample 30 molecules have molecular mass of 14,000, 45 molecules have molecular mass of 16,000 and remaining 25 molecules have molecular mass of 20,000. Calculate number average and weight average molecular masses. Also calculate PDI and comment on it.	CO2	PO2	7
	c)	What are biodegradable polymers? Explain their significance in medical and environmental applications. Describe the preparation of polyglycolic acid.	CO3	PO7	6
		OR			
6	a)	Explain the synthesis and uses of nitrile rubber and Kevlar fiber.	CO1	PO1	7
	b)	What are conducting polymers? Outline the synthesis and conducting mechanism of polyacetylene.	CO1	PO1	7
	c)	Analyze structure-property relationship in polymers with reference to (i) tensile strength and (ii) crystallinity.	CO2	PO2	6
		UNIT - IV			
7	a)	Elaborate on different materials used in memory devices.	CO3	PO7	7
	b)	What are liquid crystals? Explain the classification of liquid crystals.	CO1	PO1	7

		c)	Explain the construction and working of OLEDs with a neat diagram.	CO3	PO7	6
OR						
8	a)	What are memory devices? Explain the working of capacitor and resistor-type memory devices.	CO1	PO1	7	
	b)	Outline the possible transitions occurring during photoexcitation using Jablonski diagram.	CO1	PO1	7	
	c)	Explain the construction and working of QLEDs with a neat sketch.	CO3	PO7	6	
UNIT - V						
9	a)	What are sensors? Discuss the application of conductometric sensors in estimation of acid mixture.	CO5	PO1,2	7	
	b)	Discuss the ion exchange process for softening of hard water.	CO1	PO1	7	
	c)	Calculate the temporary, permanent and total hardness of water sample containing $Mg(HCO_3)_2 = 7.3$ mg/L, $Ca(HCO_3)_2 = 16.2$ mg/L, $MgCl_2 = 9.5$ mg/L, $CaSO_4 = 13.6$ mg/L. (Given molecular weight of $Mg(HCO_3)_2 = 146$, $Ca(HCO_3)_2 = 162$, $MgCl_2 = 92$, $CaSO_4 = 136$). Mention the disadvantages of hard water.	CO2	PO2	6	
OR						
10	a)	Explain the experimental determination of COD of an industrial wastewater sample. Mention the usefulness of determining the COD.	CO5	PO1,2	7	
	b)	What are optical sensors? Explain the estimation of copper using colorimetry.	CO5	PO1,2	7	
	c)	Discuss the importance of recycling electronic waste.	CO3	PO7	6	
