

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2025 Semester End Main Examinations

Programme: B.E.

Semester: I / II

Branch: Mechanical Engineering Stream

Duration: 3 hrs.

Course Code: 22CY1BSCME / 22CY2BSCME

Max Marks: 100

Course: Applied Chemistry for Mechanical Engineering Stream

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What are ion-selective electrodes? Describe the construction and working of glass electrode.	CO1	PO1	6
	b)	What is anodizing? Explain the process of anodizing of aluminum and mention its applications.	CO1	PO1	8
	c)	Define corrosion penetration rate. An alloy sheet of area 100 inch ² is exposed to air near the ocean. After 1 year it was found to experience a weight loss of 35 g due to corrosion. If the density of alloy 7.9 g/cm ³ . Calculate CPR in mmpy and mpy. Given: K = 534.	CO2	PO2	6
OR					
2	a)	What are reference electrodes? Describe the construction and working of calomel electrode.	CO1	PO1	6
	b)	Define metallic corrosion. Describe electrochemical theory of corrosion by taking iron as an example.	CO1	PO1	8
	c)	Write the electrode reactions and calculate the EMF of the given concentration cell at 298 K: $Cu(s) / Cu^{++} (0.03 \text{ M}) // Cu^{++} (0.5 \text{ M}) / Cu(s)$. What is the EMF of the cell at equilibrium?	CO2	PO2	6
UNIT - II					
3	a)	“Knocking decreases the engine efficiency”. Justify the statement. Discuss the mechanism of engine knocking with relevant reactions.	CO2	PO2	6
	b)	Explain the construction and working of silicon based solar cell. Mention its advantages.	CO3	PO7	8
	c)	Calculate GCV and NCV of a fuel from the following data. Mass of fuel = 0.75 g, water equivalent of calorimeter = 350 g, rise in temperature = 3.02 °C, mass of water = 1150 g, %H = 2.8, specific heat of water 4.12 kJ/kg/°C and latent heat of steam 2454 kJ/kg.	CO2	PO2	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		OR			
4	a)	Explain the construction and working of LiCoO ₂ battery. Mention its advantages.	CO3	PO7	6
	b)	“Reformation improves the quality of petrol”. Justify the statement with relevant reformation reactions.	CO1	PO1	8
	c)	Describe the production of hydrogen by water electrolysis. Analyze the disadvantages of hydrogen as a fuel.	CO3	PO7	6
UNIT - III					
5	a)	What are polymer composites? Discuss the synthesis and applications of Kevlar.	CO1	PO1	6
	b)	Justify the statement: T _g of Nylon 6,6 is higher than polyethene. Interpret the influence of flexibility on T _g of a polymer.	CO2	PO2	8
	c)	Illustrate the synthesis of (i) U-F resin and (ii) PMMA. Mention their applications.	CO1	PO1	6
OR					
6	a)	What are biodegradable polymers? Describe the synthesis and applications of polyglycolic acid.	CO3	PO7	6
	b)	Illustrate the synthesis of (i) Nitrile rubber, and (ii) Polycarbonate and mention their applications.	CO1	PO1	8
	c)	In a sample of a polymer, 20% molecules have molecular mass 15000 g/mol, 35% molecules have molecular mass 25000 g/mol, and remaining molecules have molecular mass 20000 g /mol, calculate the number average and weight average molecular mass of the polymer, and PDI.	CO2	PO2	6
UNIT - IV					
7	a)	What are alloys? Mention the composition, properties and applications of brass and Alnico.	CO1	PO1	6
	b)	Justify the statement: catalytic and thermal properties change depending upon the size of nanoparticles.	CO2	PO2	8
	c)	Illustrate the synthesis of ZrO ₂ nanoparticles by sol-gel method.	CO1	PO1	6
OR					
8	a)	Explain the classification and properties of ceramics.	CO1	PO1	6
	b)	Illustrate the engineering applications and properties of carbon nanotubes and graphene oxide.	CO3	PO7	8
	c)	Describe the synthesis of nanoparticles by precipitation method.	CO1	PO1	6

UNIT - V						
	9	a)	Define phase rule. Explain the terms involved in it with examples.	<i>CO1</i>	<i>PO1</i>	6
		b)	Define specific conductance. Describe the estimation of acid mixture by conductometric method.	<i>CO5</i>	<i>PO1, 2</i>	8
		c)	Write any two differences between COD and BOD. 20 mL of sewage water sample is reacted with 25 mL of $K_2Cr_2O_7$ solution and the unreacted $K_2Cr_2O_7$ requires 9.0 mL of 0.25 N FAS solution for titration. Under similar conditions, blank titer value is 15.0 mL. Calculate the COD of the sample.	<i>CO2</i>	<i>PO2</i>	6
			OR			
	10	a)	Explain the determination of total hardness of water using EDTA method.	<i>CO5</i>	<i>PO1, 2</i>	6
		b)	What is electrodialysis? Explain the desalination of water by electrodialysis.	<i>CO1</i>	<i>PO1</i>	8
		c)	Illustrate the application of phase rule for lead-silver system.	<i>CO1</i>	<i>PO1</i>	6

B.M.S.C.E. - ODD SEMESTER