

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: CSE STREAM

Course Code: 22CH1BSCCS / 22CY2BSCCS

Course: Applied Chemistry for Computer Science Stream

Semester: I / II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	What are secondary reference electrodes? Describe the construction and working of a Calomel electrode.	CO1	PO1	6
		b)	Analyze the effect of following factors on the rate of corrosion with suitable examples: (i) Relative areas of anode and cathode (ii) Nature of corrosion product	CO2	PO2	8
		c)	Define corrosion penetration rate. Calculate corrosion penetration rate in mpy and mmpy for the corrosion of an iron piece exposed to sulfuric acid over a period of 235 days if the weight loss is 235 g and area exposed is 23.5 inch ² . Density of iron is 7.86 g/cm ³ and K=534.	CO2	PO 2	6
			OR			
	2	a)	Describe stress corrosion with a suitable example.	CO 1	PO 1	6
		b)	Analyze the advantages of electroless plating over electroplating and illustrate the electroless deposition of copper.	CO 2	PO 2	8
		c)	Calculate the concentration at the cathode in the following concentration cell at 30 °C if $E_{cell} = 0.025V$: Cu/CuSO ₄ (0.025 M)//CuSO ₄ (X)/Cu. When does the cell stop working?	CO 3	PO 7	6
			UNIT - II			
	3	a)	Explain the construction and working of a Si based solar cell. Analyze its advantages.	CO 3	PO 7	6
		b)	Why GCV>NCV? Determine the Gross and Net calorific value of benzoic acid from the following Bomb Calorimeter experiment data: mass of fuel – 0.65 g, mass of water in the calorimeter-2.3 kg, water equivalent of calorimeter -0.56 kg, raise in temperature is 3.5 °C. Specific heat of water - 4.18kJ/kg/ °C and latent heat of condensation of steam - 2454 kJ/kg..	CO 2	PO 2	8
		c)	Justify: Aqueous solvents are not used in lithium batteries. Describe the construction and working of Li-CoO ₂ battery.	CO3	PO 7	6

UNIT – III					
4	a)	Calculate the number average molecular weight, weight average molecular weight and PDI of a polymer with 30% macromolecules having molecular mass of 3500, 40% macromolecules having molecular mass of 3900 and rest with molecular mass of 4200.	CO 2	PO 2	6
	b)	Describe the synthesis and uses of (i) U-F resin and (ii) Polyglycolic acid.	CO2	PO 2	8
	c)	Justify: Tg of Nylon is greater than polyethylene. Interpret the influence of flexibility on Tg of a polymer.	CO2	PO 2	6
	OR				
5	a)	What are conducting polymers? Explain the mechanism of conduction in polyacetylene.	CO3	PO 7	6
	b)	Illustrate the synthesis of (i) Nitrile rubber and (ii) PMMA. Mention their applications.	CO2	PO 2	8
	c)	Justify the statement “Tensile strength is a property of polymer ruled by its structure” with suitable examples.			6
UNIT – IV					
6	a)	Discuss the classification of liquid crystals.	CO 2	PO 2	6
	b)	Explain the principle of memory storage in (i) Capacitor type and (ii) Resistor type electronic memory devices.	CO2	PO 2	8
	c)	Highlight the advantages of using organic materials in optoelectronic devices. Describe the construction and working of OLED.	CO3	PO 7	6
UNIT – V					
7	a)	Calculate total, permanent and temporary hardness of a water sample containing 38 mg/L of CaSO_4 , 23 mg/L of $\text{Ca}(\text{HCO}_3)_2$, 18 mg/L of MgCl_2 and 85 mg/L of $\text{Mg}(\text{HCO}_3)_2$. Molecular weights of CaSO_4 , $\text{Ca}(\text{HCO}_3)_2$, MgCl_2 and $\text{Mg}(\text{HCO}_3)_2$ are 136g, 162g, 95g and 146g respectively.	CO2	PO 2	6
	b)	Discuss the principle of (i) potentiometric and (ii) conductometric sensor.	CO2	PO 2	8
	c)	Describe the pyrometallurgical extraction of copper.	CO3	PO 7	6
