

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22CY2BSCCV

Course: Applied Chemistry for Civil Engineering Stream

Semester: II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			
			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define corrosion. Explain electrochemical theory of corrosion for rusting of iron.	CO1	PO2	7
		b)	Illustrate the principle of working of a concentration cell. Calculate EMF of the following concentration cell at 25 °C Cu (s) / Cu ²⁺ (0.05M) // Cu ²⁺ (5M) / Cu (s). Write the half-cell and net cell reactions.	CO3	PO 3	7
		c)	What are secondary reference electrodes? Explain the construction and working of calomel electrode.	CO1	PO 2	6
		OR				
	2	a)	Illustrate the construction and working of glass electrode with a neat diagram. List out the advantages and disadvantages of glass electrode.	CO2	PO 3	7
		b)	Explain sacrificial anode and impressed current method in corrosion control.	CO3	PO 3	7
		c)	Elaborate the protection of aluminium article by anodization method.	CO3	PO 2	6
			UNIT - II			
	3	a)	Distinguish GCV & NCV. On burning 1.15 g of a coal sample in a bomb calorimeter, the temperature of 3.5 kg of water in the calorimeter increased from 26.5 °C to 28.5 °C. Water equivalent of calorimeter is 325 g. Specific heat of water is 4.187 kJ/kg/°C and latent heat of steam is 2458 kJ/kg. If the fuel contains 4% hydrogen, calculate its gross and net calorific values.	CO3	PO 3	7
		b)	With a neat diagram explain fluidized-bed catalytic cracking. Mention the advantages of fluidized bed catalytic cracking process.	CO2	PO 3	7
		c)	Lithium is one of the best anode material: justify the statement. Explain the construction and working of Li-CoO ₂ battery.	CO3	PO 2	6

UNIT - III					
4	a)	Define glass transition temperature (Tg). Explain any three factors which affects Tg of a polymer.	CO1	PO 2	7
	b)	What are adhesives? Explain synthesis, properties and applications of epoxy resin.	CO2	PO 3	7
	c)	Explain the synthesis of: (i) PMMA (ii) Butyl rubber	CO3	PO 2	6
OR					
5	a)	Explain the synthesis, properties and applications of carbon fibre.	CO3	PO 3	7
	b)	What are biodegradable polymers? Explain the synthesis, properties and applications of polyglycolic acid.			7
	c)	In a sample of a polymer, 100 molecules have molecular mass 10^3 g/mol, 250 molecules have molecular mass 10^4 g/mol, and 300 molecules have molecular mass 10^5 g/mol, calculate the number average, and weight average molecular mass and PDI of the polymer.	CO3	PO 3	6
UNIT - IV					
6	a)	Explain properties and applications of iron and its alloys.	CO 3	PO 2	7
	b)	Explain the preparation, properties and applications of soda lime glass.	CO 2	PO 3	7
	c)	Based on the composition how are refractory materials classified? List out any three properties and applications of refractory materials.	CO 3	PO 2	6
UNIT - V					
7	a)	Distinguish temporary hardness and permanent hardness. Explain the removal hardness by ion exchange method.	CO 2	PO 3	7
	b)	Define COD. Explain the experimental determination of COD of an industrial waste water.	CO 3	PO 2	7
	c)	Explain the principle and procedure for conductometric estimation of a mixture of strong acid and weak acid using strong base.	CO 2	PO 2	6
