

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: ECE / EE

Course Code: 22CH1BSCEE / 22CY2BSCEE

Course: Applied Chemistry for Electrical Engineering Stream

Semester: I / II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	What are reference electrodes? Outline the construction and working of calomel electrode with a neat diagram.			<i>CO2</i>	<i>PO2</i>	6
		b)	Explain the electroless plating of copper in PCBs			<i>CO 2</i>	<i>PO2</i>	6
		c)	Define corrosion. Illustrate differential aeration corrosion with suitable example.			<i>CO 2</i>	<i>PO 2</i>	8
		[OR]						
	2	a)	Discuss the construction and working of Glass Electrode.			<i>CO 2</i>	<i>PO 2</i>	6
		b)	What is cathodic protection? Explain impressed current method.			<i>CO 2</i>	<i>PO 2</i>	6
		c)	What are concentration cells?. Explain their importance, calculate EMF for the following cell. $Cu Cu^{2+}(0.02M) Cu^{2+}(0.2M) Cu$ at 298K.			<i>CO 2</i>	<i>PO 2</i>	8
		UNIT-II						
	3	a)	Explain the principle, properties and applications of quantum dot sensitized solar cells (QDSSCs).			<i>CO 3</i>	<i>PO 2</i>	6
		b)	Outline the construction and working of Li-CoO ₂ battery with a neat diagram.			<i>CO 2</i>	<i>PO</i>	6
		c)	Justify GCV>NCV. On burning 0.96×10^{-3} kg of a fuel in a bomb calorimeter, the temperature of 2.75 kg of water was increased by 2.7 °C. Water equivalent of calorimeter, specific heat of water and latent heat of steam are 0.385 kg, 4.187 kJ/kg/K and 2455 kJ/kg respectively. If the fuel contains 5% hydrogen, solve for its gross and net calorific values.			<i>CO 3</i>	<i>PO 3</i>	8
			UNIT - III					
4	a)	A polymer sample contains 2, 3 and 4 molecules having molecular weights 2×10^3 , 3×10^3 and 4×10^3 respectively. Solve for the number average and weight average molecular weight and PDI of the polymer.			<i>CO 3</i>	<i>PO 3</i>	6	
	b)	What are conducting polymers? Outline the synthesis and conducting mechanism of polyacetylene.			<i>CO 2</i>	<i>PO 2</i>	6	

	c)	Explain the synthesis properties and applications of : (i) PMMA (ii) Butyl rubber	CO 3	PO 2	8
		[OR]			
5	a)	Define Tg. Discuss the influence of stereo regularity and molecular mass on Tg	CO 2	PO 2	6
	b)	Write the synthesis and application of following polymers: i) Urea-Formaldehyde resin ii) Nitrile rubber	CO 2	PO 2	6
	c)	What are biodegradable polymers? Write the synthesis reactions and degradation reactions of polyglycolic acid.	CO 2	PO 2	8
		UNIT-IV			
6	a)	Describe the synthesis of Silicon by Czochralski's Crystal pulling method.	CO 2	PO 2	6
	b)	Illustrate the different types electronic transitions using Jablonski diagram.	CO 2	PO 2	6
	c)	Explain the concept of electronic memory. Outline the classification of electronic memory materials with suitable examples.	CO 2	PO 2	8
		UNIT - V			
7	a)	Describe any three size dependent properties of nanomaterials.	CO	PO	6
	b)	What is e-waste? Summarize the effects of e-waste on environment and human health.	CO	PO	6
	c)	What are optical sensors? Explain the instrumentation and estimation of copper using optical sensor.	CO	PO	8
