

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 22CY3ESMCA

Max Marks: 100

Course: Materials Chemistry and Applications

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What are secondary bondings? Discuss dipole – dipole, and dipole – induced dipole interactions with examples.	<i>CO1</i>	<i>PO1</i>	07
	b)	Calculate the bond order of NO using molecular orbital theory. Compare bond strength of NO, NO ⁺ and NO ⁻ .	<i>CO1</i>	<i>PO1</i>	07
	c)	Using band theory, explain the increased conductivity of semiconductors upon doping.	<i>CO1</i>	<i>PO1</i>	06
UNIT - II					
2	a)	What are non-stoichiometric defects? Discuss the metal excess and metal deficient defects.	<i>CO2</i>	<i>PO2</i>	07
	b)	Define Braggs' law and explain the terms involved in it.	<i>CO1</i>	<i>PO1</i>	07
	c)	Calculate the distance between set of (i) {1 0 1} planes and, (ii) {1 1 1} planes in a cubic unit cell with $a = 432$ nm	<i>CO2</i>	<i>PO2</i>	06
OR					
3	a)	Discuss the construction and working of scanning electron microscope. Elaborate on its applications.	<i>CO2</i>	<i>PO2</i>	07
	b)	A beam of X-rays of wavelength 0.71 Å is diffracted by {1 1 0} planes of rock salt (FCC) with lattice constant of 2.4 Å. Find the glancing angle for the first-order diffraction.	<i>CO2</i>	<i>PO2</i>	07
	c)	Explain the terms: lattice, motif and unit cell.	<i>CO1</i>	<i>PO1</i>	06
UNIT - III					
4	a)	What are the functions of catalytic converter used in automobiles? Discuss the role of catalysts used in them.	<i>CO3</i>	<i>PO6</i>	07
	b)	Give examples of bifunctional catalysts. Explain the role of bifunctional catalyst in steam reforming.	<i>CO3</i>	<i>PO6</i>	07
	c)	Discuss the mechanism of acid catalyzed synthesis of Bis-phenol A.	<i>CO3</i>	<i>PO6</i>	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV					
5	a)	What is eutectic temperature? Sketch and discuss lead-tin phase diagram.	CO2	PO2	07
	b)	What is critical solution temperature? Explain phase diagram of phenol-water system.	CO2	PO2	07
	c)	With temperature-composition phase diagrams explain (i) high boiling azeotrope and (ii) low boiling azeotrope.	CO2	PO2	06
OR					
6	a)	Discuss the steam distillation. What are its applications?	CO3	PO6	07
	b)	Discuss any one application of Nernst distribution law. A solid X is added to a mixture of benzene and water. After shaking well and allowing to stand, 20 mL of the benzene layer was found to contain 0.12 g of X and 100 mL of water layer contained 0.21 g of X. Calculate the value of distribution coefficient.	CO3	PO6	07
	c)	Discuss TTT transformation curves with an example.	CO2	PO2	06
UNIT - V					
7	a)	Elaborate on the manufacture, composition and applications of soda glass.	CO3	PO6	07
	b)	Explain the composition, properties and applications of the common ferrous alloys.	CO3	PO6	07
	c)	With relevant examples discuss the classification of lubricants.	CO3	PO6	06
