

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 22CY3ESMCA

Course: Materials Chemistry and applications

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Explain the band theory of solids. On the basis of band theory discuss the electrical conductivity in metals. 05
	b) What is lattice energy? Derive Born-Lande equation for the calculation of lattice energy. 06
	c) Explain dipole-dipole interactions with an example. 05
	d) What are ionic solids? The ionic solids have high melting points, Justify. 04

UNIT - II

2	a) What are Miller indices? Find the miller indices for the planes that intersect the crystallographic axis at the distances (i) $(0.5a, -1b, 2c)$, and (ii) $(1a, 2b, \infty c)$. 06
	b) Discuss the types of defects in non-stoichiometric crystals. 05
	c) What is neutron diffraction? List out the differences between X-ray and neutron diffraction. 05
	d) Explain briefly the working principle of transmission electron microscopy. 04

OR

3	a) Discuss the construction and working scanning electron microscope. 06
	b) Define Braggs' law and explain the terms involved in it. 04
	c) Elaborate metal excess defects in crystals. 05
	d) What is the distance between the adjacent Miller planes if the first order reflection from X-rays of wavelength 1.54 \AA occurs at $27^\circ 8'$? 05

UNIT - III

4	a) Discuss the mechanism of acid catalysed reaction by taking an appropriate example. 05
	b) What are phase transfer catalysts? Discuss any one application of phase transfer catalysts. 05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

c) Elaborate the significance of catalytic converter in vehicles. **04**

d) Discuss catalytic poisons and inhibitors with examples. **06**

UNIT – IV

5 a) State Nernst distribution law. Explain any one application. **04**

b) Define critical solution temperature (CST). Explain the principle involved in finding CST of phenol water system. **06**

c) Explain the phase diagram for single component iron system. **06**

d) Explain briefly Isothermal transformation (TTT) curves for eutectoid steel. **04**

OR

6 a) State and explain Gibbs phase rule. Calculate the degrees of freedom for the following decomposition, **06**

b) Give a brief account on application of phase diagram for Iron- iron carbide system. **04**

c) What is steam distillation? Discuss its advantages. **05**

d) State and label the regions of lead-tin phase diagram. **05**

UNIT – V

7 a) Explain the properties and applications of the common ferrous alloys. **06**

b) Discuss the classifications of lubricants with examples. **04**

c) Describe the manufacture of soda glass with the help of a labelled diagram. **05**

d) Elaborate on the composition and applications of borosilicate glass. **05**
