

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 23CY3ESMCA / 22CY3ESMCA

Max Marks: 100

Course: Materials Chemistry and Applications

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Discuss the importance of the radius ratio in crystal structure. Obtain the limiting radius ratio for coordination number 3.	CO2	PO2	7
	b)	Discuss the linear combination of atomic orbitals (LCAO). What are the conditions for the combination of atomic orbitals to form molecular orbitals?	CO1	PO1	7
	c)	What are secondary bonds? Explain intra-molecular and inter-molecular hydrogen bonding with an example.	CO2	PO2	6
OR					
2	a)	What is lattice energy? Derive Born-Lande equation for the calculation of lattice energy of solids.	CO1	PO1	7
	b)	Discuss (i) ion-dipole, and (ii) dipole – induced dipole interactions with examples.	CO2	PO2	7
	c)	Which has a longer bond: O_2^{-1} or O_2 ? Explain your response using molecular orbital theory.	CO1	PO1	6
UNIT - II					
3	a)	Deduce Braggs' law for diffraction of X-ray by crystals. Justify that visible light cannot be used for diffraction of crystals.	CO2	PO2	7
	b)	Discuss metal excess defects in crystals. How does it differ from the Frenkel defect?	CO2	PO2	7
	c)	A beam of X-rays of wavelength 0.71 \AA is diffracted by $(1\ 0\ 0)$ plane of rock salt (FCC) with lattice constant of 2.4 \AA . Find the glancing angle for the first-order diffraction.	CO2	PO2	6
OR					
4	a)	Elaborate on edge and screw dislocations.	CO1	PO1	7
	b)	Discuss the construction and working of transmission electron microscope.	CO1	PO1	7
	c)	Determine the miller indices for the planes that intersect the crystallographic axis at the distances $(2a, 3b, -2c)$ and $(2a, b, \infty c)$.	CO2	PO2	6
UNIT - III					
5	a)	Explain the reactant and product selectivity of zeolite catalysts using relevant examples.	CO3	PO3	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Give examples of bifunctional catalysts. Explain the role of bifunctional catalyst in steam reforming.	CO3	PO3	7
	c)	Describe the mechanism of an acid-catalyzed reaction with a relevant example.	CO1	PO3	6
		OR			
6	a)	Explain the role of catalysts in catalytic converters.	CO3	PO3	7
	b)	What are organometallic catalysts? Explain the mechanism of the catalytic alkene isomerization reaction.	CO1	PO1	7
	c)	What properties make zeolites suitable for catalytic applications? Discuss.	CO2	PO2	6
		UNIT - IV			
7	a)	Explain the lead-tin phase diagram. What is the eutectic point?	CO1	PO1	7
	b)	What is Nernst distribution law? Discuss any three applications.	CO2	PO2	7
	c)	State the Gibbs phase rule. Explain (i) Eutectic mixture and, (ii) Eutectic reaction.	CO1	PO1	6
		OR			
8	a)	Describe the phase diagram of single-component iron. What is a triple point?	CO1	PO1	7
	b)	What are azeotropes? Explain (i) low boiling, and (ii) high boiling azeotropes with examples.	CO2	PO2	7
	c)	Elaborate on steam distillation. What are its applications?	CO3	PO3	6
		UNIT - V			
9	a)	Explain the manufacturing, composition, and applications of soda glass.	CO3	PO3	7
	b)	Explain thin film and thick film lubrication.	CO1	PO1	7
	c)	Discuss the composition and applications of any two copper alloys.	CO3	PO3	6
		OR			
10	a)	What is viscosity index? An oil of unknown viscosity index has a viscosity of 70 Pa.s at 210 °F and 580 Pa.s at 100 °F. The high-viscosity index standard (i.e., Pennsylvanian oil) has a viscosity of 70 Pa.s at 210 °F and 600 Pa.s at 100 °F. The low-viscosity index standard (Gulf oil) has a viscosity of 70 Pa.s at 210 °F and 700 Pa.s at 100 °F. Calculate the viscosity index of the unknown oil.	CO2	PO2	7
	b)	Elaborate on the composition and applications of (i) borosilicate glass, and (ii) optical glass.	CO3	PO3	7
	c)	Discuss the role of various elements found in steel.	CO1	PO1	6
