

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

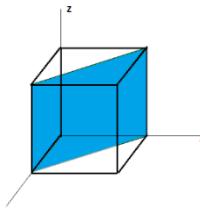
Programme: B.E.

Semester: III

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 23CY3ESMCA / 22CY3ESMCA


Max Marks: 100

Course: Material Chemistry and Applications

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	Describe the band theory for conductors, semiconductors, and insulators.		1	1	10
	b)	Discuss the intermolecular forces present in (i) H ₂ molecule (ii) H ₂ O (iii) Alcohol (iv) NaCl.		1	1	10
OR						
2	a)	Derive Born-Lande equation for ionic crystals. Highlight its significance and limitations.		1	1	10
	b)	Based on molecular orbital theory explain the formation of HF and O ₂ molecules. Calculate their bond order.		1	1	10
			UNIT - II			
3	a)	A plane in a unit cell of rock salt has intercepts as shown in the figure. Find the Miller indices and hence the inter-planar distance. Given the lattice constant 0.28 nm.		2	2	10
	b)	Explain the principle, construction, working and applications of transmission electron microscope.		2	2	10
OR						
4	a)	Highlight the significance of Braggs' equation in crystal structure determination. A beam of X-rays of wavelength 0.071 nm is diffracted by a plane of rock salt at (0 1 1) along the		2	2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		crystallographic axes (lattice constant of 0.3 nm). Find the glancing angle for the second-order diffraction.			
	b)	Explain the principle, construction, working and applications of scanning electron microscope.	2	2	10
UNIT - III					
5	a)	Explain the mechanism of an acid and a base catalyzed reactions by taking suitable examples.	2	2	10
	b)	Outline the preparation, properties and applications of zeolites as catalysts.	3	6	10
OR					
6	a)	Explain the significance of organometallic complexes as catalyst. Discuss the mechanism of hydrogenation of an alkene by a suitable organometallic catalyst.	1	1	10
	b)	What are the roles of catalytic converter in vehicles? Discuss the action of catalyst in catalytic converter.	3	6	10
UNIT - IV					
7	a)	What are azeotropes? Explain the phase diagram of high boiling and low boiling azeotropes with suitable examples.	1	1	10
	b)	With neat labelled sketch explain the phase diagram of lead-tin system.	1	1	10
OR					
8	a)	What is Nernst distribution law? To a container containing 100 mL of water and 10 mL of an organic solvent, 1 g of methylamine (CH_3NH_2) is added. Upon mixing, 0.6 g of methylamine is transferred to the organic layer. Calculate the partition coefficient between the organic solvent and water.	2	2	10
	b)	With neat labelled sketch explain the phase diagram of iron-iron carbide system.	2	2	10
UNIT - V					
9	a)	Explain the general properties and applications of ferrous alloys.	1	1	7
	b)	Explain the types of lubricants with examples.	1	1	7
	c)	Discuss the composition and applications of optical glass and polycarbonate glass.	2	2	6
OR					
10	a)	Discuss the manufacturing of soda glass.	1	1	7
	b)	Outline the composition of alloys for high temperature applications.	2	2	7
	c)	Elaborate on thick film lubrication mechanism.	1	1	6