

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 23CY7OEECM

Max Marks: 100

Course: ENERGY CRISIS MANAGEMENT

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define energy management. Outline the three steps in the energy crisis management.	<i>CO1</i>	<i>PO1</i>	8
	b)	List the objectives and benefits of energy management programme.	<i>CO2</i>	<i>PO7</i>	6
	c)	Distinguish primary and secondary sources of energy with suitable examples.	<i>CO3</i>	<i>PO4</i>	6
OR					
2	a)	Summarize the following. (i) Conservation of energy (ii) Laws of energy.	<i>CO1</i>	<i>PO1</i>	8
	b)	Compare commercial and non-commercial energy sources with suitable examples.	<i>CO2</i>	<i>PO7</i>	6
	c)	Justify (i) A machine can never be 100 per cent efficient. (ii) Energy efficiency is an integral part of energy conservation promotional policies.	<i>CO3</i>	<i>PO4</i>	6
UNIT - II					
3	a)	Elaborate on the components and working of windmill with diagram.	<i>CO2</i>	<i>PO7</i>	8
	b)	Summarize the construction and working of Pyranometer with labelled diagram.	<i>CO3</i>	<i>PO4</i>	6
	c)	Outline the construction and working of photovoltaic cell with labelled diagram. List the advantages of solar energy.	<i>CO1</i>	<i>PO1</i>	6
OR					
4	a)	Relate mathematically and highlight the significance of the factors affecting wind power system.	<i>CO2</i>	<i>PO7</i>	8
	b)	Compare dry steam and wet steam system of geothermal source with a neat block diagram.	<i>CO3</i>	<i>PO4</i>	6
	c)	Justify (i)Horizontal axis wind turbine is the most successful type of wind turbine. (ii)Flat plate solar collectors are always tilted	<i>CO1</i>	<i>PO1</i>	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III						
5	a)	Classify thermal energy storage materials with suitable examples.	CO1	PO1	8	
	b)	Analyze the causes and effects of Infinite Conductivity in a superconductor.	CO2	PO7	6	
	c)	Differentiate battery and a supercapacitor.	CO1	PO1	6	
OR						
6	a)	Classify Super capacitors based on the charge storage mechanism	CO1	PO1	8	
	b)	List the advantages and limitations of magnetic energy storage.	CO2	PO7	6	
	c)	Justify (i)Diamagnetism is different from Meissner effect. (ii) Superconductors are promising energy storage device.	CO1	PO1	6	
UNIT - IV						
7	a)	Define microbial fuel cell. Explain the construction and working of microbial fuel cell with a neat labelled diagram.	CO3	PO4	8	
	b)	Classify Biogas plants with a neat diagram	CO2	PO7	6	
	c)	Explain the three stages of Briquetting process.	CO1	PO1	6	
OR						
8	a)	Summarize the applications, advantages and limitations of microbial fuel cells.	CO3	PO4	8	
	b)	Outline the working of fluidized-bed gasifier with a neat labelled diagram.	CO2	PO7	6	
	c)	Justify (i)Biogas is an economically advantageous option for small-scale energy (ii) Municipal solid waste conversion to electricity will reduce landfills.	CO1	PO1	6	
UNIT - V						
9	a)	Classify energy audit instruments giving suitable examples.	CO3	PO4	8	
	b)	List the responsibilities of energy manager in an organization.	CO2	PO7	6	
	c)	Define (a) Energy audit (b) Energy system (c) Energy forecasting	CO3	PO4	6	
OR						
10	a)	Analyze any four outcomes of energy audit.	CO3	PO4	8	
	b)	Differentiate between energy index and cost index.	CO2	PO7	6	
	c)	Justify (i)Energy audit is particularly important for energy-intensive operations. (ii)Energy audit for organizations must comply with environmental regulations.	CO3	PO4	6	
