

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

Programme: B.E.

Branch: Institutional Elective

Course Code: 21CY7OENMA

Course: Nanomaterials - Synthesis, Characterization and Applications

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Discuss the classification of nanomaterials based on its dimension with suitable examples.	<i>CO1</i>	<i>PO1</i>	6
	b)	Explain the history and future scope of nanomaterials.	<i>CO1</i>	<i>PO1</i>	7
	c)	Analyze the following size dependent properties of nanomaterials: (i) Optical properties (ii) surface area	<i>CO2</i>	<i>PO5</i>	7
UNIT - II					
2	a)	Explain the synthesis of metal oxide nanoparticles through bottom-up approach. Mention any two disadvantages of it.	<i>CO1</i>	<i>PO1</i>	6
	b)	What are carbon nanotubes? Explain the classification of CNTs. Give any two applications of CNTs.	<i>CO1</i>	<i>PO1</i>	7
	c)	Describe magnetron sputtering technique with a neat sketch.	<i>CO2</i>	<i>PO5</i>	7
OR					
3	a)	Explain the synthesis of Al_2O_3 nanoparticles through combustion method.	<i>CO2</i>	<i>PO5</i>	6
	b)	Discuss the principle and synthesis of nanomaterials through Co-Precipitation method with a suitable example.	<i>CO2</i>	<i>PO5</i>	7
	c)	Explain photolithography technique for the synthesis of nanomaterials. Mention the disadvantages of this method.	<i>CO2</i>	<i>PO5</i>	7
UNIT - III					
4	a)	Analyze and explain the effect of quantum confinement on bandgap in nanoparticles.	<i>CO2</i>	<i>PO5</i>	6
	b)	Explain the effect of size on thermal and magnetic properties.	<i>CO3</i>	<i>PO2</i>	7
	c)	Elaborate on the effect of size on the lattice parameters in materials.	<i>CO2</i>	<i>PO5</i>	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT-IV					
5	a)	Explain the interpretation of X-ray diffraction data to solve the crystal structure of a solid material.	CO2	PO5	6
	b)	Describe the working principle of SEM with a neat block diagram.	CO2	PO5	7
	c)	Elaborate on the application of TEM for the identification of imperfections and grain boundary in solid materials.	CO2	PO5	7
OR					
6	a)	Describe the particle size calculation using XRD.	CO2	PO5	6
	b)	Sample charging is a problem in SEM imaging. Explain the technique to mitigate sample charging in SEM. Mention any two applications of SEM.	CO2	PO5	7
	c)	Explain the working of TEM with a neat sketch.	CO2	PO5	7
UNIT - V					
7	a)	Discuss the application of nanotechnology in the field of food and agriculture.	CO3	PO2	6
	b)	Explain the use of nanomaterials in following fields: (i) sports (ii) medicine.	CO3	PO2	7
	c)	Explain the application of nanomaterials in defense sector.	CO3	PO2	7
