

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Semester: VIII

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 23CY8IEEDM

Max Marks: 100

Course: Environmental Disaster Management and Mitigation

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	Define habitat and an ecosystem. Name the two components in Ecosystem.	<i>CO1</i>	<i>PO1</i>	4
	b)	Classify radioactive wastes based on the intensity of radioactivity. Explain the construction and working of radioactivity sensing scintillation counter with a neat diagram.	<i>CO3</i>	<i>PO6</i>	8
	c)	List any four global effects of pollution and suggest a remedial measure for each.	<i>CO5</i>	<i>PO7</i>	8
UNIT - II					
2	a)	Identify any four techniques involved in artificial ground water recharging.	<i>CO1</i>	<i>PO1</i>	4
	b)	Define hard water. Elaborate on the softening of water by ion exchange method with a diagram and relevant reactions.	<i>CO5</i>	<i>PO7</i>	8
	c)	Define COD. Why COD > BOD. Solve for COD if 50 mL of an industrial effluent is allowed to react with $K_2Cr_2O_7$ solution. The unreacted $K_2Cr_2O_7$ consumed 25mL of 0.05 N FAS. In blank titration, 38 mL of same FAS is consumed.	<i>CO2</i>	<i>PO2</i>	8
OR					
3	a)	Classify the impurities in water with suitable examples.	<i>CO1</i>	<i>PO1</i>	4
	b)	Compare the methodologies of rain water harvesting in rural and urban areas.	<i>CO3</i>	<i>PO6</i>	8
	c)	Outline the steps involved in primary and any one secondary waste water treatment.	<i>CO5</i>	<i>PO7</i>	8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
4	a)	Define “criteria air pollutants” and “air quality index”	<i>CO1</i>	<i>PO1</i>	4
	b)	Mention various components in a sensor. Outline the steps involved in the working of NOx gas sensor.	<i>CO2</i>	<i>PO2</i>	8
	c)	Why is particulate matter in air considered as a pollutant? Summarize the construction and working of any two devices used to remove particulate matter from an effluent gas with suitable diagrams.	<i>CO5</i>	<i>PO7</i>	8
UNIT - IV					
5	a)	Identify the main sources of e-waste and mention the toxic materials present in e-waste.	<i>CO1</i>	<i>PO1</i>	4
	b)	Define Bio-waste processing. List any three advantages and disadvantages.	<i>CO3</i>	<i>PO6</i>	8
	c)	Differentiate the techniques involved in the management of solid and liquid hazardous waste.	<i>CO5</i>	<i>PO7</i>	8
UNIT - V					
6	a)	List the major sustainable energy sources.	<i>CO1</i>	<i>PO1</i>	4
	b)	Define green chemistry. State any 3 principles of green chemistry.	<i>CO1</i>	<i>PO1</i>	8
	c)	Appraise the advantages and disadvantages of Biodiesel.	<i>CO5</i>	<i>PO7</i>	8
OR					
7	a)	Justify: (i) Biodiesel is less polluting than petroleum diesel. (ii) Hydrogen fuel is one of the best sustainable fuels.	<i>CO5</i>	<i>PO7</i>	4
	b)	Outline the construction and working of a photovoltaic cell. Analyze the usage of Quantum dots to increase its efficiency.	<i>CO2</i>	<i>PO2</i>	8
	c)	Define “Atom economy”. Calculate the atom economy for the generation of water during combustion of methane to form carbon dioxide and water. $\text{CH}_4 + 2 \text{CO}_2 \longrightarrow \text{CO}_2 + 2\text{H}_2\text{O}$ Given atomic weight of C=12, O=16, H=1	<i>CO3</i>	<i>PO6</i>	8
