

B.M.S. College of Engineering, Bengaluru-560019

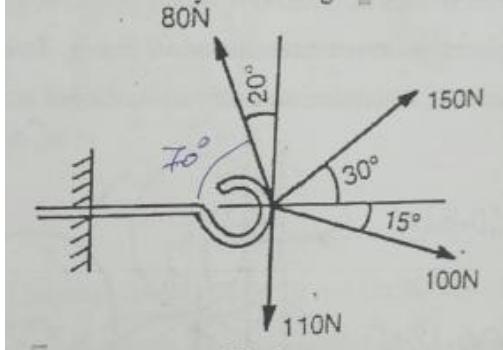
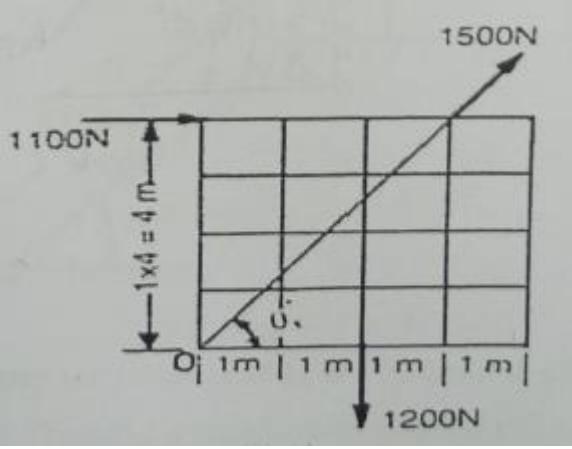
Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

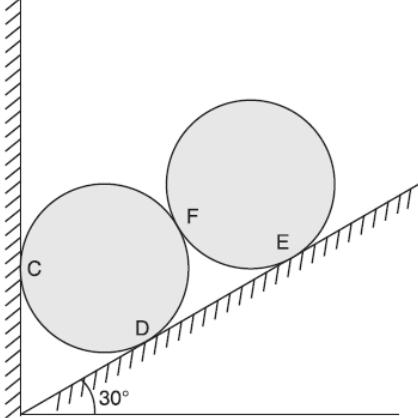
Semester: I / II

Branch: Common to all Branches

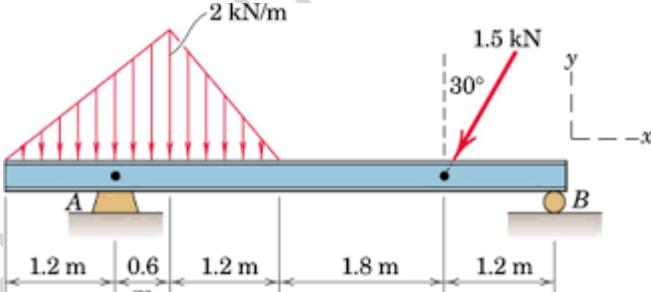


Duration: 3 hrs.

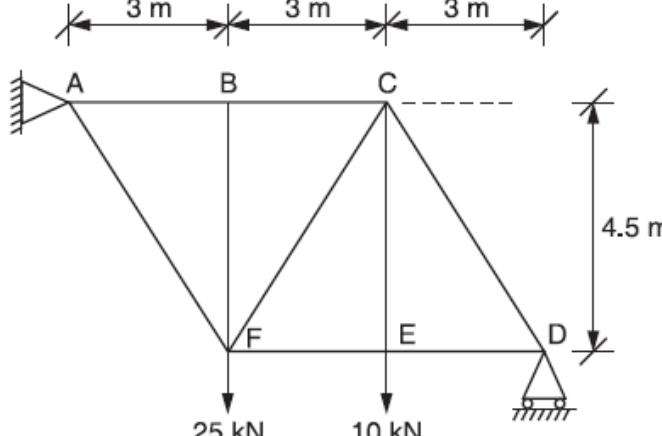
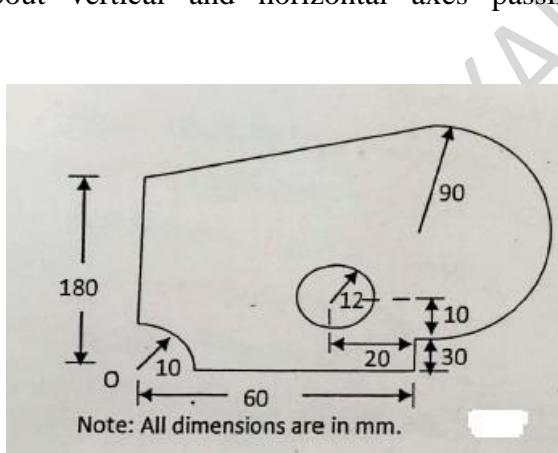
Course Code: 21CV1ESECM / 21CV2ESECM

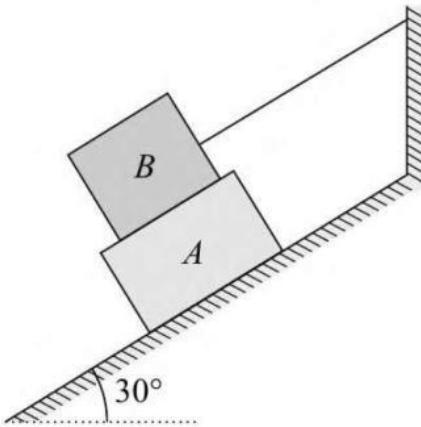
Max Marks: 100


Course: Elements of Civil Engineering and Engineering Mechanics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.


UNIT - I			CO	PO	Marks
1	a)	State and explain the principle of transmissibility of a force and principle of physical independence.	CO1	PO1	04
	b)	Find the resultant of force system acting on the hook shown in FIG.1 FIG 1	CO1	PO1 PO2	06
	c)	Resultant of four forces of which 3 are shown in fig. 2, is only a couple of moment 4800Nm of clockwise direction. If each square is one meter on a side, determine fourth force completely. Locate it in the given system. FIG.2	CO1	PO1 PO2	10



Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.


OR

2	a)	<p>Two identical rollers each of weight 700 N are supported by an inclined plane and vertical wall as shown in FIG 3. Determine the reaction exerted by the wall and the inclined plane at C, D. Assume all contact surfaces to be smooth.</p> <p>FIG.3</p>	CO1 PO1 PO2	10
	b)	<p>A 100 kg box is shifted by two persons, one pulling it by exerting a force of 200 N at an angle of 20^0 to the horizontal and another pushing it from behind by exerting a force of 150 N inclined at 10^0 to the horizontal. Determine the resultant force acting on the box.</p>	CO1 PO1 PO2	06
	c)	<p>State and prove Varignon's theorem.</p>	CO1 PO1 PO2	04

UNIT-II

3	a)	<p>Determine the support reactions of the overhanging beam shown in FIG.4.</p> <p>FIG.4</p>	CO2 PO1 PO2	10
---	----	---	-------------------	----

	b)	Determine the forces in all members of the truss shown in FIG.5 by method of joints.	CO2	PO1 PO2	10
		<p>FIG.5</p>			
UNIT - III					
4	a)	For the plane section shown in FIG.6, determine the moment of inertia about vertical and horizontal axes passing through centroid..	CO1	PO1	12
		<p>FIG 6</p>			
	b)	State and prove Parallel Axes and Perpendicular Axis theorem.	CO2	PO1	08
OR					
5	a)	For the plane section shown in FIG. 7, determine the centroid with respect to point 'O'.	CO1	PO1	10
		<p>FIG 7</p>			

	b)	Derive the expression for the centroid of a quadrant of a circle by using a method of integration.	CO1	PO1	10
		UNIT-IV			
6	a)	In the system of blocks shown, FIG 8 the block A is on the verge of sliding downwards. Determine the coefficient of static friction assuming it the same at all contact surfaces. Mass of block A and block B are 100 kg and 50 kg respectively. Note that the block B is held by a string attached to the wall such that it is parallel to the incline. Also compute the tension in the string.	CO2	PO1 PO2	10
		<p>FIG-8</p>			
	b)	A uniform ladder of length 6 m weighs 500 N. The coefficient of friction between the wall and the ladder is 0.25 and that between the ground and the ladder is 0.35. Compute the minimum inclination of the ladder with the wall, so that it does not slip with the man of weight 2000 N at the top.	CO2	PO1 PO2	10
		UNIT - V			
7	a)	Explain i) Structural Engineering ii)Geotechnical Engineering.	CO3	PO7	10
	b)	Briefly explain the role of civil engineers in development of nation.	CO3	PO7	10
