

B.M.S. College of Engineering, Bengaluru-560019

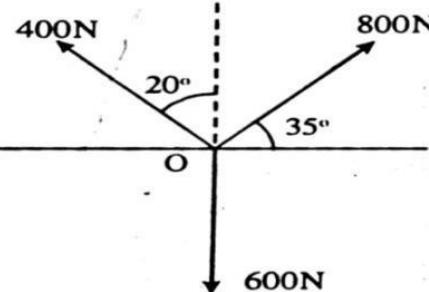
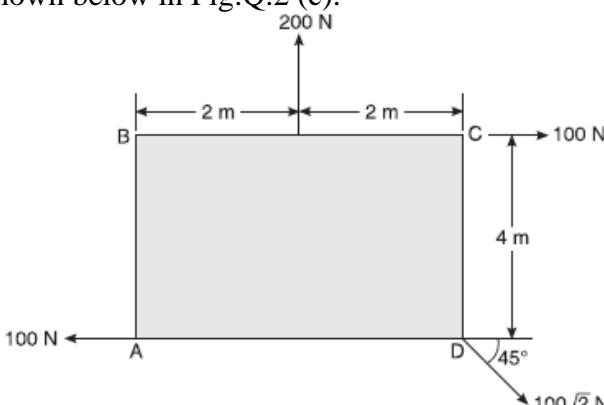
Autonomous Institute Affiliated to VTU

February / March 2025 Semester End Main Examinations

Programme: B.E.

Semester: I/II

Branch: Common to all Branches



Duration: 3 hrs.

Course Code: 18CV1ESENM / 18CV2ESENM

Max Marks: 100

Course: ENGINEERING MECHANICS

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain different types of force system with neat sketches.	CO1	PO1	08
	b)	Determine the magnitude and direction of the resultant for the coplanar concurrent force system shown in the Fig.Q.1 (b).	CO1	PO1	08
	c)	 Fig.Q.1 (b).	CO1	PO1	04
		OR			
2	a)	Define couple and list the characteristics of couple.	CO1	PO1	05
	b)	Distinguish between resolution and composition of forces.	CO1	PO1	05
	c)	Determine the magnitude, direction and position of the resultant force with reference to the point A for the non-coplanar force system shown below in Fig.Q.2 (c).	CO1	PO1	10
		 Fig.Q.2 (c).			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II

3 a) Determine the reactions at all contact points for a horizontal channel with an inner clearance of 1000mm. It carries two spheres of radius 350mm and 250mm whose weights are 500N and 400N respectively as shown in Fig.Q.3 (a). Assume all contact surfaces to be smooth.

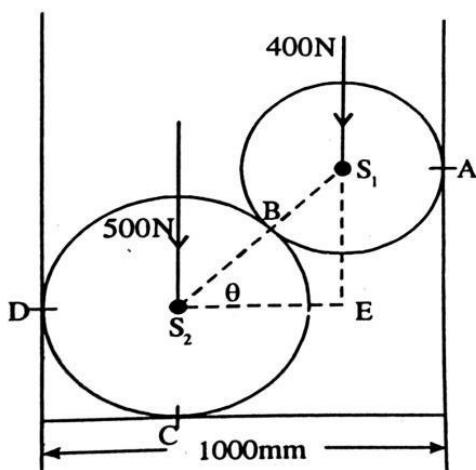


Fig.Q.3 (a).

b) Determine the support reactions for the beam shown in Fig.Q.3 (b).

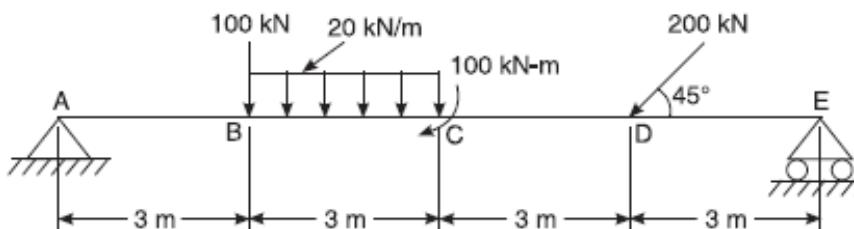
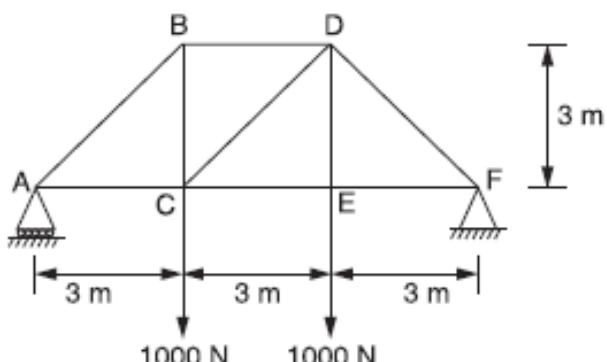


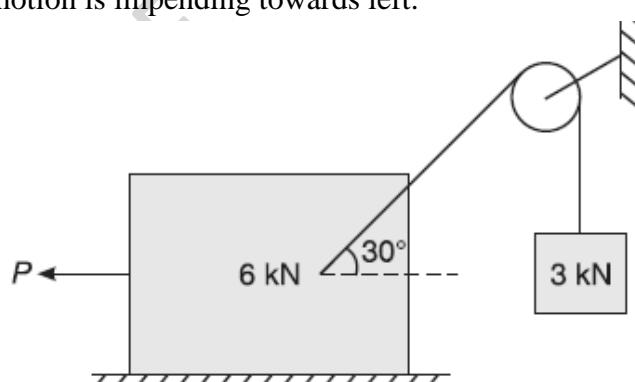
Fig.Q.3 (b).

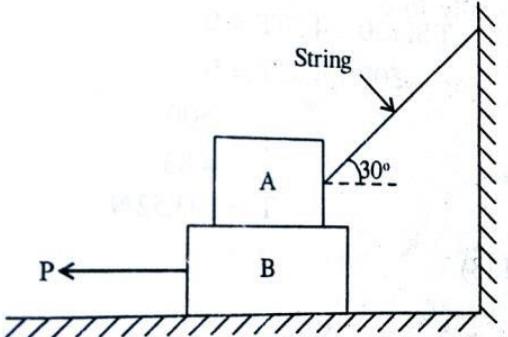
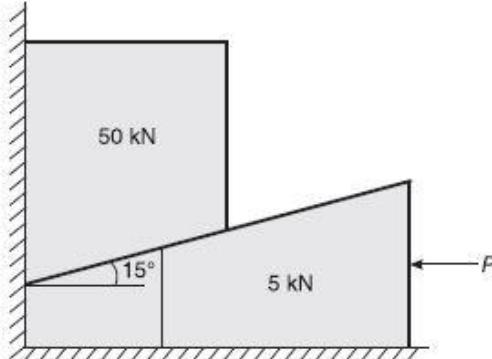
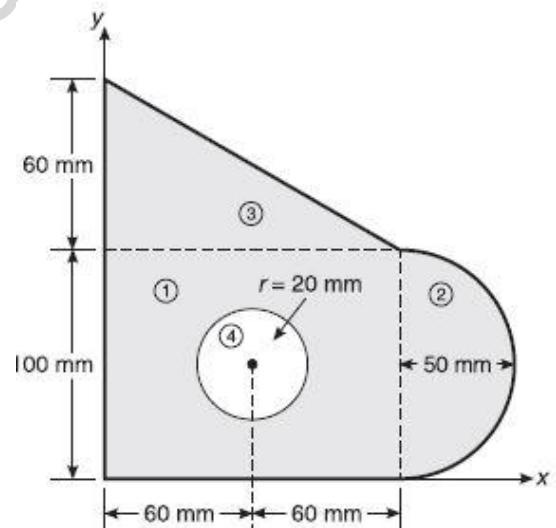
c) State and explain Lami's theorem with a neat sketch.

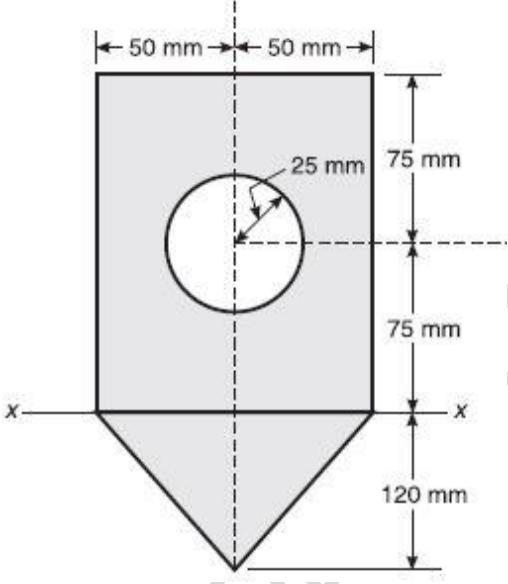
OR

4 a) Analyse by the method of joints for the truss shown in Fig.Q.4 (a).




Fig.Q.4 (a).




CO2 PO1 08


CO2 PO1 08

CO2 PO1 04

CO2 PO1 10

	b)	Compute the tensions in the strings AB, BC and CD as shown in Fig.Q.4 (b).	CO2	PO1	06
	c)	List the types of supports with sketches.	CO2	PO1	04
		UNIT - III			
5	a)	Explain the following terms: (i) Angle of friction (ii) Coefficient of friction (iii) Angle of Repose	CO2	PO1	06
	b)	A block weighing 6 kN is attached to a string as shown in Fig.Q.5 (b), which passes over a frictionless pulley and supports a weight of 3 kN, when the coefficient of friction between the block and the floor is 0.35. Determine the value of force P when the (i) motion is impending towards right. (ii) motion is impending towards left.	CO2	PO1	06
	c)	<p>Fig.Q.5 (b)</p> <p>A block of weight 6 kN is on a horizontal floor. A string is attached to the left side of the block and passes over a pulley to support a hanging weight of 3 kN. The angle between the string and the vertical is 30°.</p>	CO2	PO1	08
		OR			

6	a)	State the laws of dry friction.	CO2	PO1	04
	b)	Find the force P just required to slide the block B in the arrangement shown in the Fig.Q.6 (b). Take, weight of block A = 150N and weight of block B = 200N and coefficient of friction (μ) = 0.2 for all contact surfaces.	CO2	PO1	06
		Fig.Q.6 (b).			
	c)	A block of weight 50 kN is kept in equilibrium, by a wedge as shown in Fig.Q.6 (c). If the coefficient of friction is 0.2 for all the surfaces and the wedge has a weight of 5 kN, determine the force P necessary to cause a tendency in the block to move up.	CO2	PO1	10
		Fig.Q.6 (c).			
UNIT - IV					
7	a)	Find the centroid w.r.t given axis as shown in Fig.Q.7 (a).	CO2	PO1	10
		Fig.Q.7 (a).			

		b)	Distinguish between centroid and centre of gravity.	CO2	PO1	03
		c)	Develop an expression for centroid of Quarter circle.	CO2	PO1	07
			OR			
	8	a)	State and prove parallel axes theorem of moment of inertia.	CO2	PO1	05
		b)	Develop an expression for moment of inertia for Rectangle.	CO2	PO1	05
		c)	Determine the moment of inertia of the plane lamina as shown in Fig.Q.8 (c) about the x-axis.	CO2	PO1	10
			<p>Fig.Q.8 (c)</p>			
			UNIT - V			
	9	a)	Explain the following terms briefly: (i) Angle of projection (ii) Horizontal range (iii) Vertical height (iv) Time of flight	CO3	PO2	06
		b)	Derive the equation for the path of a projectile.	CO3	PO2	06
		c)	A particle is projected in air with a velocity of 100 m/s at an angle of 30° with horizontal. Find the horizontal range, maximum height attained and time of flight.	CO3	PO2	08
			OR			
	10	a)	State and explain D 'Alembert's principle of dynamic equilibrium.	CO3	PO2	06
		b)	A bullet is fired from a gun with an initial velocity of 250m/sec to hit a target at a horizontal distance of 3750m and 625m above the gun. Determine the minimum angle of projection so that the bullet will hit the target.	CO3	PO2	08
		c)	Derive the expression for banking of roads with usual notations.	CO3	PO2	06