

B.M.S. College of Engineering, Bengaluru-560019

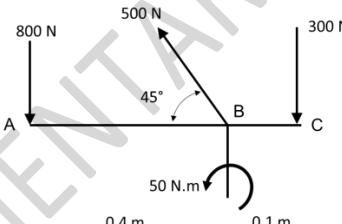
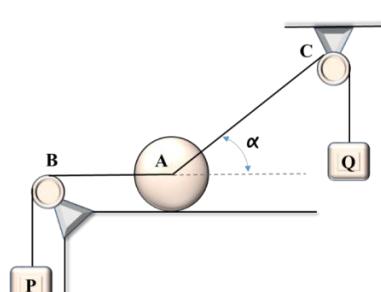
Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

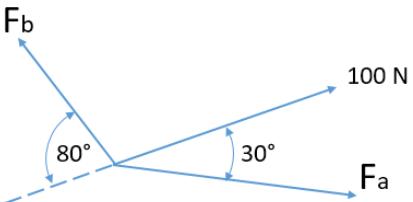
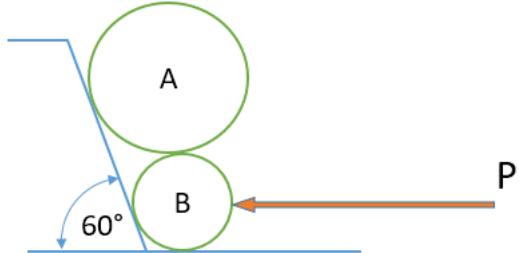
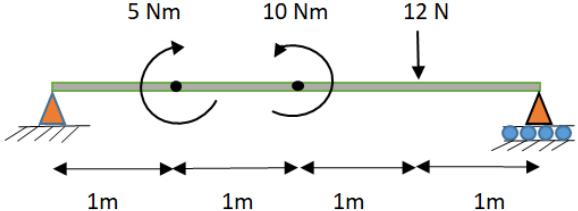
Programme: B.E.

Branch: Civil Engineering

Course Code: 22CV1ESEN1M



Course: ENGINEERING MECHANICS

Semester: I




Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	State the following principles. i. Principle of superposition of forces; ii. Principle of transmissibility of forces.	CO1	P OI	4
	b)	A bracket is subjected to coplanar force system as shown in Fig. Q.1 (b). Determine the magnitude, direction and the x-intercept of the resultant force with respect to 'A' as origin.	CO2	PO1	8
	c)	<p>Fig. Q.1 (b)</p> <p>A ball weighing 400 N rests upon a smooth horizontal plane and has attached to its center two strings AB and AC which pass over frictionless pulleys at B and C and carry loads P and Q, respectively, as shown in Fig. Q 1 (c). If the string AB is horizontal, find the angle α that the string AC makes with the horizontal when the ball is in a position of equilibrium. Also find the reaction R between the ball and the plane.</p> <p>Fig. Q 1 (c)</p>	CO2	PO1	8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
2	a)	Explain the basic idealizations in mechanics.	<i>CO1</i>	<i>PO1</i>	4
	b)	Find the components of the 100 N force shown in Fig. Q 2 (b) by the method of triangle law of forces.	<i>CO1</i>	<i>PO1</i>	6
		<p>Fig. Q 2 (b)</p>			
	c)	Two cylinders A and B of radius 400 mm and 200 mm having weights 400N and 200N respectively, lean over an inclined wall on one side as shown in Fig. Q 2 (c). A horizontal force $P=260\text{N}$ is applied on cylinder 'B' to prevent the cylinders from rolling. Find the reactions developed at all contact surfaces.	<i>CO2</i>	<i>PO1</i>	10
		<p>Fig. Q 2 (c)</p>			
UNIT - II					
3	a)	Explain different types of loading over beams.	<i>CO1</i>	<i>PO1</i>	6
	b)	Determine support reactions for the beam shown in Fig. Q 3(b).	<i>CO2</i>	<i>PO1</i>	6
		<p>Fig. Q 3 (b)</p>			
	c)	Analyse the truss shown in Fig. Q 3 (c) by the method of joints. Indicate the member forces on the truss elements and mention the nature of force.	<i>CO2</i>	<i>PO1</i>	8

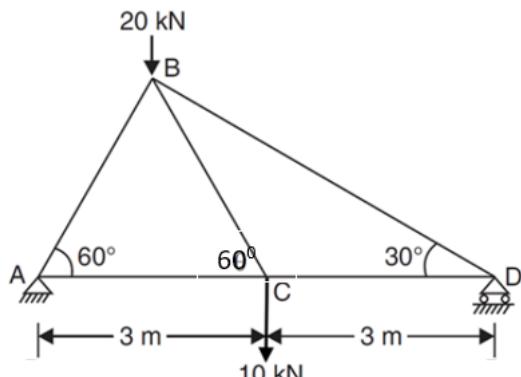


Fig. Q 3 (c)

UNIT - III

4 a) Explain the phenomenon of friction with a neat graphical sketch. *CO1* *PO1* **4**

b) A uniform ladder 4.8 m long and weighing 'W' is placed with one end on the ground and the other end against a vertical wall as shown in Fig. Q 4 (b). The angle of friction at all contact surfaces is 20° . Find the minimum value of the angle ' θ ' at which the ladder can be inclined with the horizontal before slipping occurs.

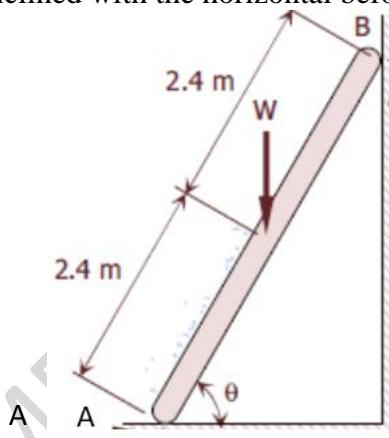


Fig. Q 4 (b)

c) Two blocks A and B weighing 25 kN, and 5 kN respectively, are held in position against an inclined plane by applying a horizontal force P as shown in Fig. Q 4 (c). Find the least value of P which will induce motion of the block A upwards. Angle of limiting friction for all contact surfaces is 12° .

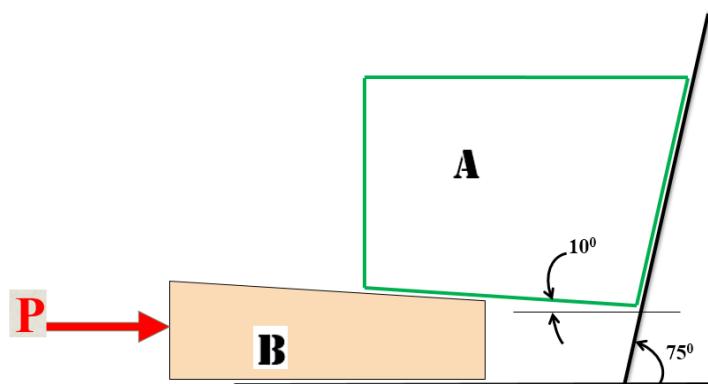
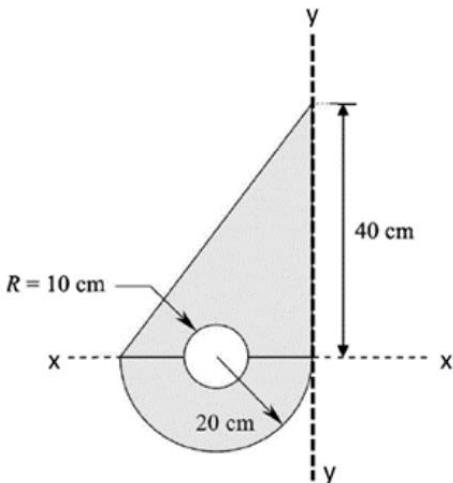



Fig. Q 4 (c)

UNIT - IV					
5	a)	State the following: - i. Parallel axis theorem ii. Radius of gyration	<i>CO1</i>	<i>PO1</i>	6
	b)	Determine the moment of inertia of the composite area shown in Fig. Q 5 (b) about the x and y axes indicated.	<i>CO2</i>	<i>PO1</i>	14
Scribble Exams 2024					
		 Fig. Q 5 (b)			
UNIT - V					
6	a)	State D Alembert's principle	<i>CO1</i>	<i>PO2</i>	4
	b)	Determine the minimum stopping distance 's' and the corresponding time 't' required by a truck, if a crate kept on the horizontal flatbed of the truck is not slipped forward. Take $\mu_s = 0.4$ and $\mu_k = 0.3$ between the crate and the flatbed of the truck which has a speed of 90km/h.	<i>CO3</i>	<i>PO2</i>	8
	c)	A cricket ball is hit by a batsman at a height of 1.6 m above the ground. The ball is caught by the fielder near the boundary at a height of 0.6 m above the ground exactly after 5 seconds. If the ball is hit with a velocity of 90 kmph determine the angle at which the ball is to be hit by the batsman. Also determine the distance between the batsman and the fielder.	<i>CO3</i>	<i>PO2</i>	8
OR					
7	a)	State work-energy principle.	<i>CO1</i>	<i>PO2</i>	4
	b)	A train weighing 3000 kN is moving down a slope of 1 in 150 at a constant speed of 18 kmph and develops a power of 35 kW. i. Calculate the tractive resistance. ii. When it is pulled up the slope at the same speed, calculate the power developed by the engine.	<i>CO3</i>	<i>PO2</i>	8
	c)	A tram car weighs 100 kN, the tractive resistance being 5N/kN weight. Calculate the power required to propel the car at a uniform speed of 20 kmph i. On level surface ii. Up an incline of 1 in 200 and Down an inclination of 1 in 300 Take efficiency of motor as 80%	<i>CO3</i>	<i>PO2</i>	8