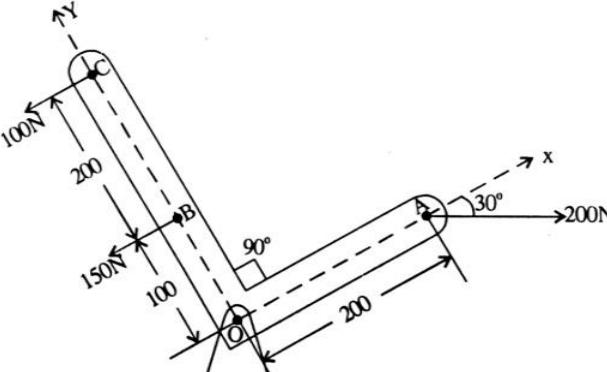
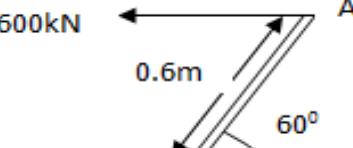


February / March 2025 Semester End Main Examinations

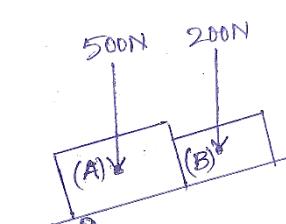
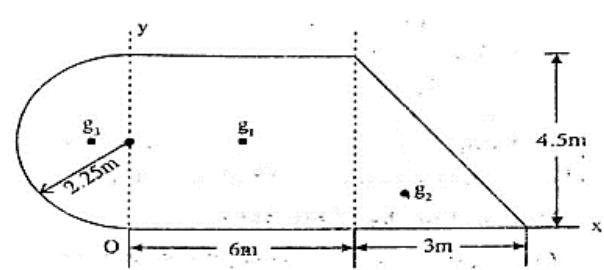
Programme: B.E.

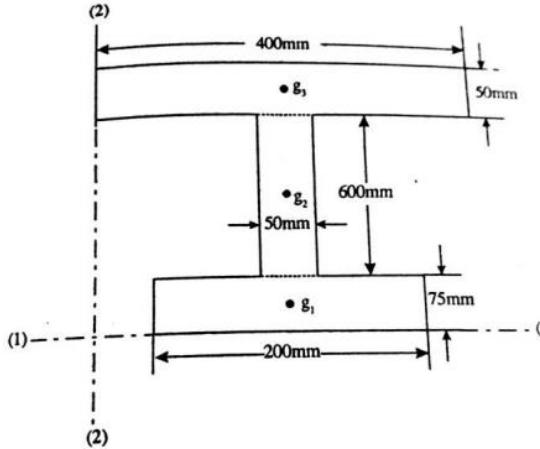
Semester: I

Branch: Civil Engineering



Duration: 3 hrs.

Course Code: 22CV1ESEN



Max Marks: 100


Course: Engineering Mechanics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I					
			CO	PO	Marks
1	a)	State and derive the equation for Law of Parallelogram of forces.	CO1	PO 1,2	5
	b)	Distinguish between Resolution and Composition of forces.	CO1	PO1,2	5
	c)	Three external forces are acting on L-shaped lever as shown in the Fig-1c. Determine the equivalent system through O as shown.	CO1	PO1,2	10
		<p>Fig-1c</p>			
		OR			
2	a)	Describe the characteristics of a force.	CO1	PO1,2	5
	b)	Determine the force couple equivalent at point O for the given Fig-2b.	CO1	PO1,2	5
		<p>Fig-2b</p>			

	c)	<p>Determine the magnitude, direction and position of the resultant force with respect to point C as shown in Fig-2c.</p>	CO1	PO1, 2	10
		UNIT - II			
3	a)	<p>Two identical cylinders each weighing 2kN are supported by vertical and inclined plane as shown in Fig-3a. Assuming smooth surfaces determine the reactions at A, B and C</p>	CO2	PO1, 2	10
	b)	Briefly describe different types of beams.	CO2	PO1,2	5
	c)	Briefly describe different types of loads.	CO2	PO1,2	5
		OR			
4	a)	Briefly describe the types of trusses	CO2	PO1,2	5
	b)	Analyze the truss shown in the Fig-4b by the method of joints.	CO2	PO1,2	15
		Fig-4b			

UNIT - III					
5	a)	Briefly explain the types of friction	CO2	PO1,2	5
	b)	Explain angle of friction and angle of limiting friction	CO2	PO1,2	5
	c)	Find the force P required to slide the block B in the arrangement shown in the Fig-5c. Determine the tension in the string if $\mu = 0.2$ for all contact surfaces. Weight of block A and B = 500N and 1000N	CO2	PO1,2	10
OR					
6	a)	Determine the maximum angle that can be reached before the bodies slip down the inclination. Take $\mu_A = 0.3$ and $\mu_B = 0.2$ for the Fig-6a shown below	CO2	PO1,2	10
	b)	Explain the laws of dry friction.	CO2	PO1,2	10
UNIT - IV					
7	a)	Define centroid, center of gravity and axis of reference	CO3	PO1,2	6
	b)	Locate the centroid of the area shown in figure with respect to the axis shown in Fig-7b.	CO3	PO1,2	14
		Fig-7b			

		OR			
	8	a) Derive an equation to locate moment of inertia of a triangle.	CO3	PO1, 2	10
		b) Find the M.I. along the horizontal axis passing through the centroid of the section shown in Fig-8b	CO3	PO1, 2	10
		Fig-8b			
		UNIT - V			
	9	a) Define acceleration due to gravity and derive an expression for the time taken by a freely falling body to reach the ground from a height h .	CO4	PO1, 2	10
		b) A particle is projected from the ground with an initial velocity of 50 m/s at an angle of 30° with the horizontal. Determine: a) Time of flight, b) Maximum height reached and c) Horizontal range.	CO4	PO1, 2	10
		OR			
	10	a) Using D'Alembert's principle, solve the problem of a block of mass 10 kg sliding down a rough incline at an angle of 30° with a coefficient of friction $\mu=0.2$. Determine the acceleration of the block and the time it takes to slide down a 5 m inclined plane.	CO4	PO1, 2	10
		b) Two blocks of masses 5 kg and 10 kg are connected by a string passing over a frictionless pulley. The 10 kg block is hanging vertically, and the 5 kg block rests on a frictionless horizontal surface. Calculate the acceleration of the system and also find the tension in the string.	CO4	PO1, 2	10
