

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2023 Semester End Make-Up Examinations

Programme: B.E.

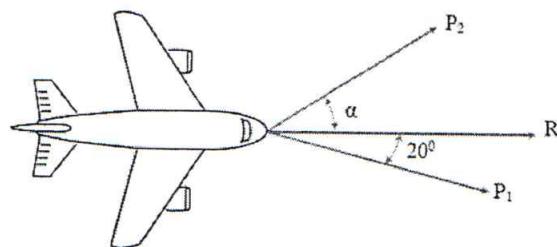
Branch: Common to all Branches

Course Code: 22CV1ESEN

Course: Engineering Mechanics

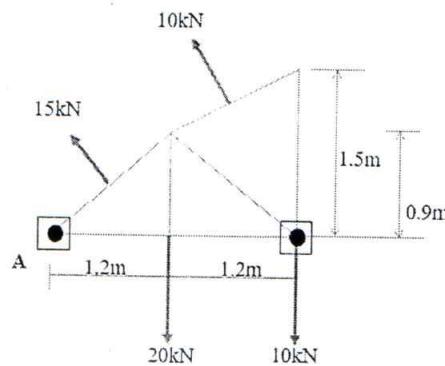
Semester: I

Duration: 3 hrs.


Max Marks: 100

Date: 11.08.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.


MODULE - I

1 a) Explain the concept of idealizations of bodies in Mechanics. 04
 b) A disabled aircraft on runway is pulled by two tractors P_1 and P_2 , in the forward direction as shown in Fig\Q1(b). If the resultant of the two forces exerted by them is a 300 kN force parallel to the axis of the aircraft, find the value of ' α ' such that the force exerted by P_2 is minimum. Also find the corresponding force to be exerted by P_1 . 08

Fig\Q1(b)

c) Loads act on a roof truss as shown in Fig\Q1(c). The loads on the bottom chord are vertical; those on the top chord are perpendicular to the chord lines and act midway between chord points. Find magnitude, direction, and position of the resultant force from 'A'. 08

Fig\Q1(c)

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR

2 a) List the conditions of equilibrium for a concurrent force system and non-concurrent force system. **04**

b) Illustrate 'Resolution of a force into a force and a couple' system, with a neat sketch. **04**

c) A ladder weighing 250 N is to be kept in position against a smooth wall on a smooth floor as shown in Fig.Q2(c). Determine the horizontal force 'P' required for the equilibrium of the ladder when a man weighing 750 N is positioned at a height of 2m above the floor level as shown. **12**

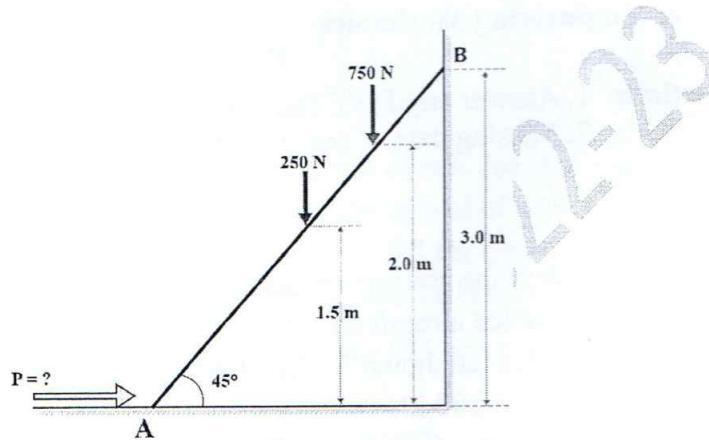


Fig.Q 2 (c)

MODULE - II

3 a) Distinguish between statically determinate and statically indeterminate beams **04** with examples.

b) Determine the reactions at the supports for the beam shown in Fig.Q3 (b) **08**

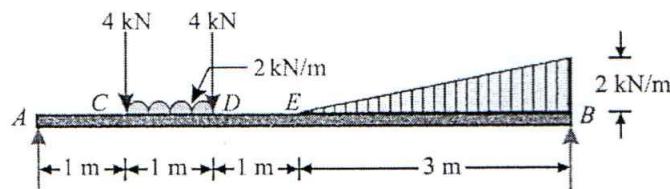


Fig.Q3(b)

c) Analyse the truss shown in Fig.Q3(c) by method of joints and tabulate the forces **08** in all the members indicating their nature.

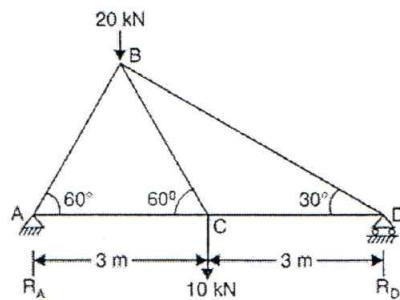


Fig.Q3(c)

MODULE - III

4 a) With a neat sketch explain the theory of dry friction. 04

b) Define the following: 04

- Angle of repose
- Cone of friction

c) Two blocks are connected by a uniform rod 1m long that makes an angle of 30° with horizontal as shown in Fig.Q4 (c). The weight of the rod is negligible and block A weighs 50 N. The coefficient of friction is 0.35 between the block B and vertical wall. The pins at the ends of the rod are frictionless. Determine the maximum weight of the block B for which equilibrium position is maintained. 12

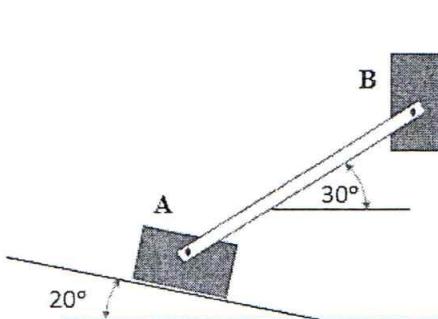


Fig.Q4 (c)

MODULE - IV

5 a) With usual notations, derive an expression for centroid of (i) semi-circle (ii) quadrant of a circle from first principles. 08

b) Determine the radius of gyration of the lamina shown in Fig.Q5 (b) about the horizontal axis passing through centroid. 12

Fig.Q5(b)

MODULE - V

6 a) With reference to projectile motion explain the following terms with relevant equations and sketches. 04

- Horizontal range
- Time of flight

b) Derive the expression for the motion of projectile. 06

c) A ball is thrown from the ground with a velocity of 20 m/s at an angle of 30^0 to the horizontal. Determine 10

- (i) The velocity of the ball at $t = 0.5$ s
- (ii) Total time of flight of the ball
- (iii) Maximum height reached
- (iv) Range of the ball
- (v) Maximum range.

OR

7 a) State and explain D' Alembert's principle. 04

b) In a police investigation of car accident, it was concluded that a car while in motion along a straight level road has skidded for a total of 60m after the brakes were applied. If the coefficient of friction is $\mu = 0.5$ for tyres and road surface, what was the probable speed of the car just before the brakes were applied? 07

c) A stone is thrown vertically up with a velocity of 25 m/s from the top of a tower 28 m high. Calculate 09

- (i) Time taken for the stone to reach the ground
- (ii) The maximum height reached by the stone above ground level.
- (iii) Velocity with which the stone hits ground.
