

B.M.S. College of Engineering, Bengaluru-560019

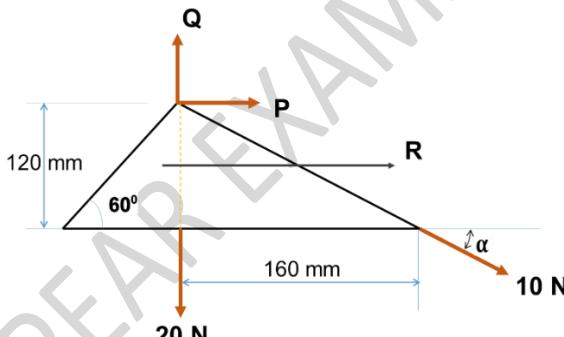
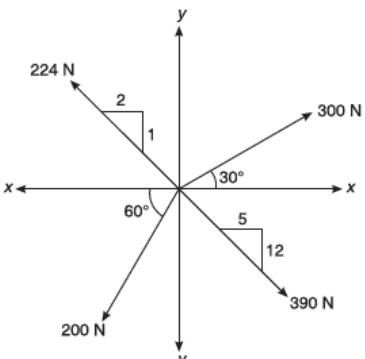
Autonomous Institute Affiliated to VTU

September 2024 Supplementary Examinations

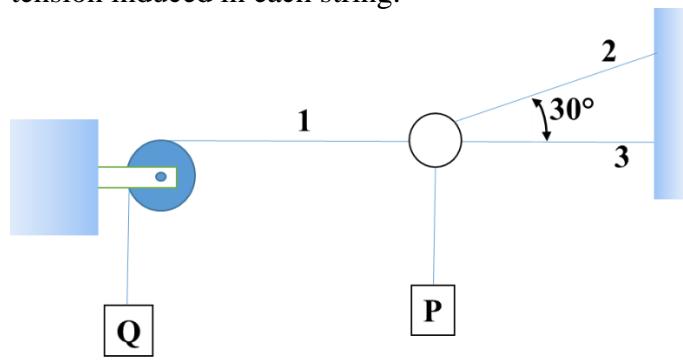
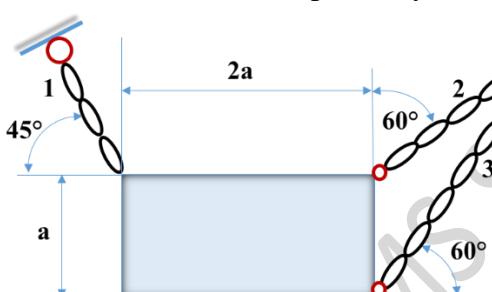
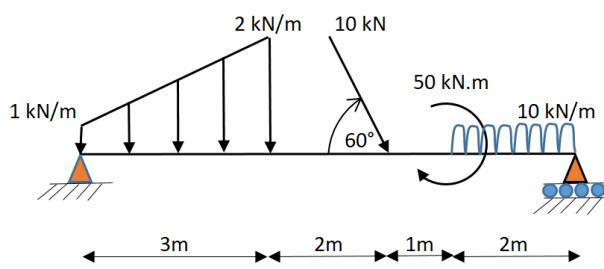
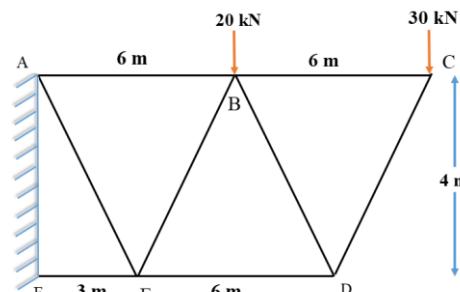
Programme: B.E.

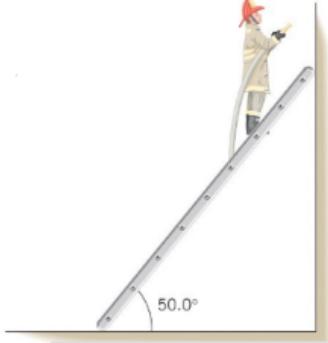
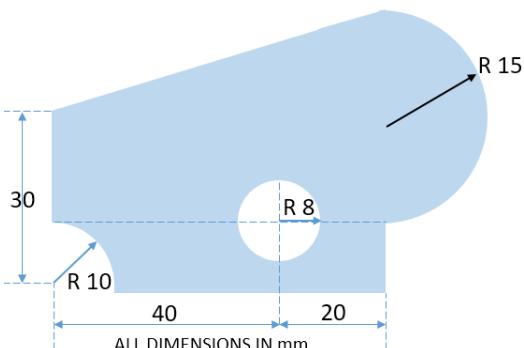
Branch: Civil Engineering

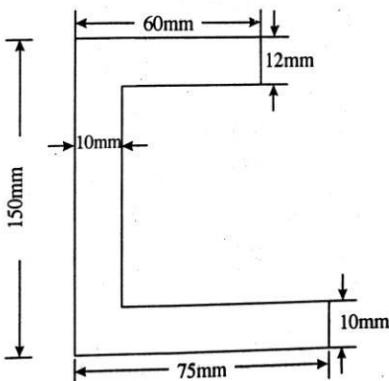
Course Code: 23CV1ESEN



Course: Engineering Mechanics

Semester: I





Duration: 3 hrs.



Max Marks: 100


Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	State and explain 'Triangle law of forces' with a neat sketch.	CO1	PO1	3
	b)	Four forces acting on a triangle ABC are shown in figure-1. The sum of moments of these forces at point 'C' is 2000 N-mm clockwise. If resultant of force system is in horizontal direction, find its magnitude and point of application.	CO1	PO1, PO2	7
 Fig-1					
	c)	Determine the resultant of the forces acting on a particle as shown in Fig -2	CO1	PO1, PO2	10
 Fig -2					
UNIT-II					
2	a)	State and prove Lami's theorem.	CO1	PO1, PO2	4

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>In the figure-3, weights 'P = 2225 N' and 'Q = 4450 N' are suspended in a vertical plane by strings 1, 2, 3 as shown. Find the tension induced in each string.</p> <p>Fig-3</p>	CO1 PO1, PO2	6
	c)	<p>The homogenous rectangular slab shown in figure-4 weighs 35 kN. It is suspended by chains 1, 2 and 3. Calculate tensions T₁, T₂ and T₃ in chains 1, 2 and 3 respectively.</p> <p>Fig-4</p>	CO1 PO1, PO2	10
		OR		
3	a)	Explain the term 'Statically determinate beams' with examples.	CO1 PO1	3
	b)	Determine the support reactions for the beam shown in figure -5	CO1 PO1, PO2	7
	c)	<p>Fig-5</p>	CO1 PO1, PO2	10
	c)	Determine the forces in all the members of the frame shown in figure 6. Indicate the nature of the forces.	CO1 PO1, PO2	10
		<p>Fig-6</p>		

UNIT - III					
4	a)	A ladder 8 m long and weighing 335 N leans against a smooth vertical wall making 50^0 with ground. A firefighter, whose weight is 875 N, stands 6.30m up along the ladder from the bottom of the ladder. Find the forces that the wall and the ground exert on the ladder. Take coefficient of friction between ladder and wall as 0.25 and coefficient of friction between ladder and floor as 0.3. Refer Fig-7.	CO2	PO1, PO2	10
		<p>Fig 7</p>			
UNIT - IV					
5	a)	Derive the expression for coordinates of centroid of a quadrant of a circle from first principles.	CO3	PO1	6
	b)	Compute the least radius of gyration for the shaded area shown in figure 8.	CO3	PO1	14
		<p>Fig-8</p>			

OR					
6	a)	Derive the expression for moment of inertia for a right-angled triangle with its reference axis along the height of the triangle.	CO3	PO1	6
	b)	Find the radius of gyration of the area shown in figure-9, about the polar axis passing through centroid	CO3	PO1	14
Fig-9					
UNIT-V					
7	a)	State and explain D'Alembert's principle.	CO4	PO1	4
	b)	A rocket is projected vertically upward until it is 50 km above the launching site. At this instant, it is turned so that its velocity is directed at 3 upward and 4 horizontal and the power is shut off. At that moment its velocity is 1680 m/sec. The rocket strikes the ground at the same elevation as the launching site. Determine the horizontal distance covered by rocket, and its velocity when it touches the ground.	CO4	PO1	8
	c)	In a police investigation of tyre marks, it was concluded that a car while in motion along a straight level road has skidded for a total of 60 m after the brakes were applied. If the coefficient of friction is 0.45 for tyres and pavement, what was the probable speed of the car just before the brakes were applied? Use D'Alembert's principle	CO4	PO1	8
