

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: I / II

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 22CV1ESICV / 22CV2ESICV

Max Marks: 100

Course: Introduction to Civil Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
1	a)	Briefly outline the importance of the streams Environmental engineering and hydraulics & water resources engineering to the society.	CO1	PO6	08
	b)	Discuss the different proportions and functional properties of mortar.	CO1	PO6	06
	c)	Classify the structural and nonstructural elements of the building.	CO1	PO6	06
		UNIT - II			
2	a)	Justify how effectively sustainable goals are achieved in civil engineering industry?	CO2	PO7	07
	b)	Enumerate the recycling of different materials in construction field.	CO2	PO7	07
	c)	Discuss the major problems associated with urban flooding problems.	CO2	PO7	06
		UNIT - III			
3	a)	Explain with the examples idealization of bodies as applied to mechanics.	CO3	-	04
	b)	Find the resultant and its direction for the system of forces shown in the Fig.3b	CO3	PO1, PO2	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

Fig.3b

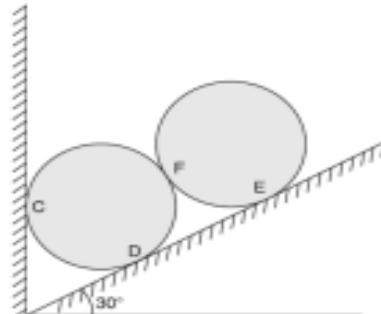
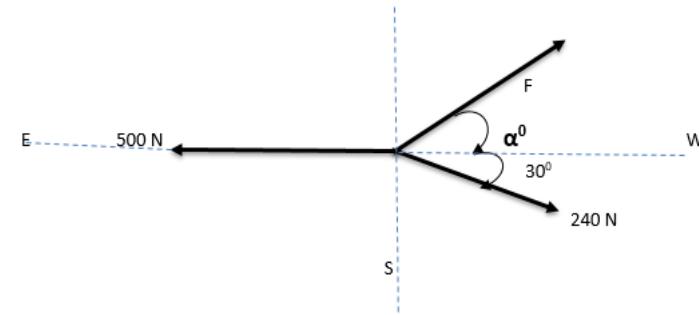
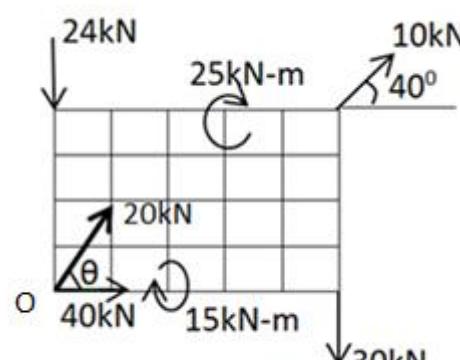



	c)	<p>Two identical rollers each of weight 700 N are supported by an inclined plane and vertical wall as shown in Fig.3c. Find the reaction exerted by the wall and the inclined plane at C, D. Assume all contact surfaces to be smooth.</p>	CO 3	PO1, PO2	10
OR					
4	a)	<p>The force system shown in Fig Q4(a) has a resultant of 250 N acting vertically up. Determine the value of F and α^0 required to give this resultant.</p>	CO3	PO1, PO2	06
	b)	<p>List the characteristics of a couple.</p>	CO3	PO1, PO2	04
	c)	<p>Determine the magnitude, direction and position of the resultant of system of forces shown in Fig.4c with respect to point "O ". The spacing of the grids is 2m along both the directions.</p>	CO3	PO1, PO2	10

Fig.4c

UNIT - IV

5 a) Differentiate between centroid and center of gravity.

CO4 - **04**

b) Obtain from first principles coordinates of a sector of a circle using usual notations.

CO4 PO1 **06**

c) Locate the centroid of the plane given in Fig 5.c with respect to the point O.

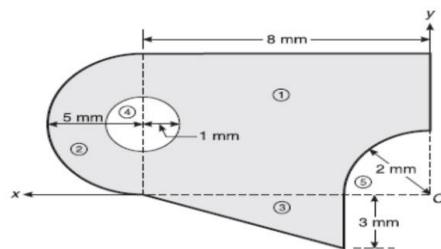


Fig 5.c

UNIT - V

6 a) Determine the radius of gyration of the shaded area shown in Fig Q6(a) about the vertical axis passing through centroid.

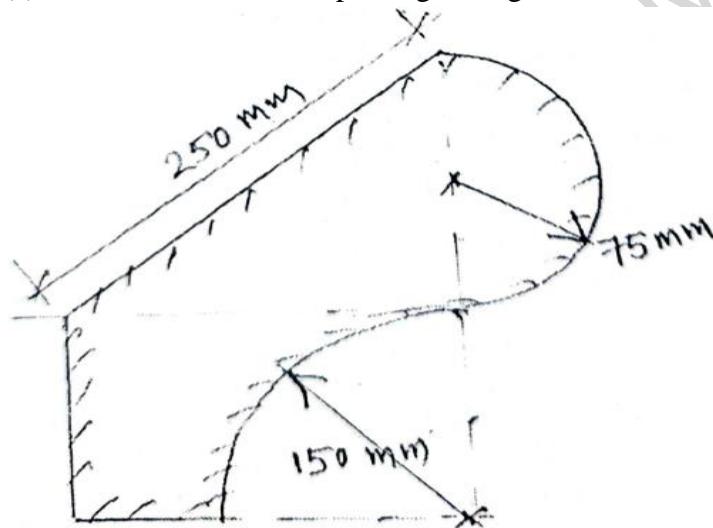


Fig Q6(a)

b) Find the moment of inertia of the area shown in Fig.6b about the horizontal axis passing through centroid.

CO4 PO1 **08**

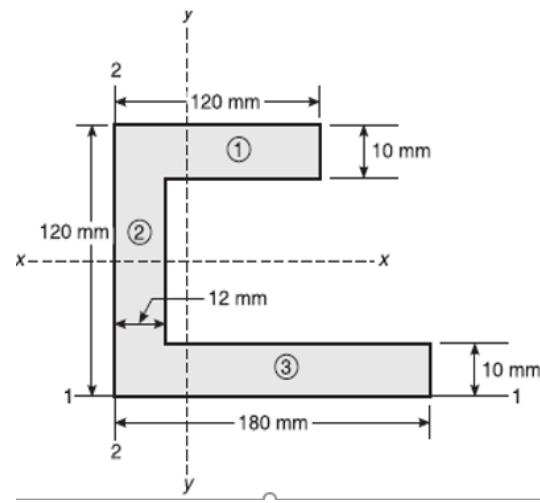


Fig.6b

OR

7 a) Determine the moment of inertia of the shaded area shown in Fig Q7(a) about the axis AA

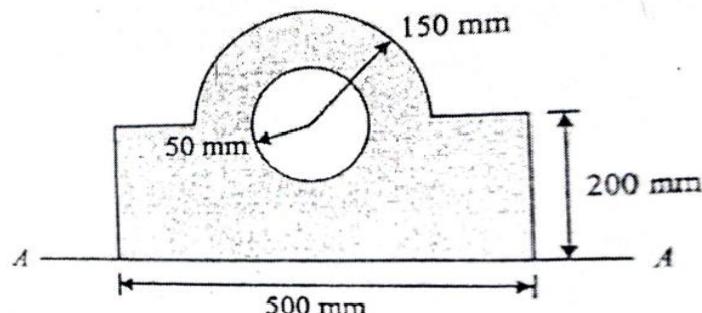


Fig Q7(a)

b) Determine the moment of inertia of the section shown in Fig.7b about its horizontal axis passing through its centroid.

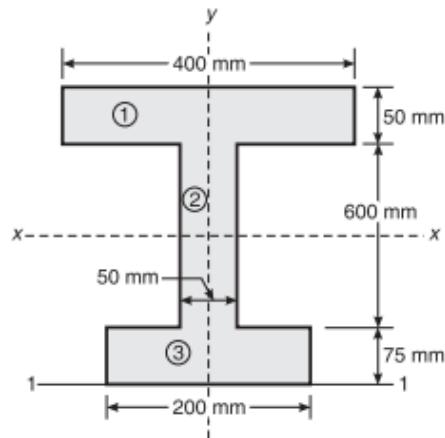


Fig.7b

CO4

PO1

10

CO4

PO1

10
