

B.M.S. College of Engineering, Bengaluru-560019

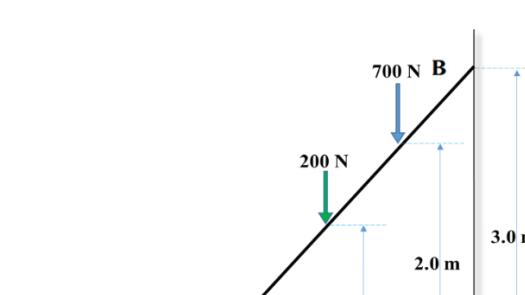
Autonomous Institute Affiliated to VTU

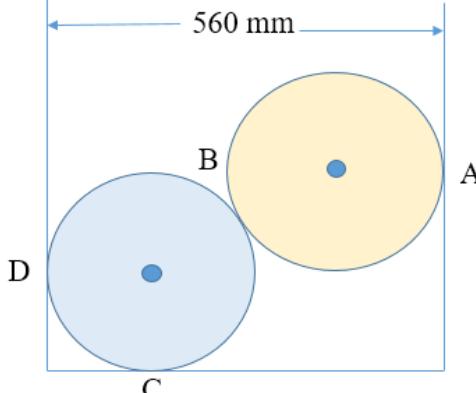
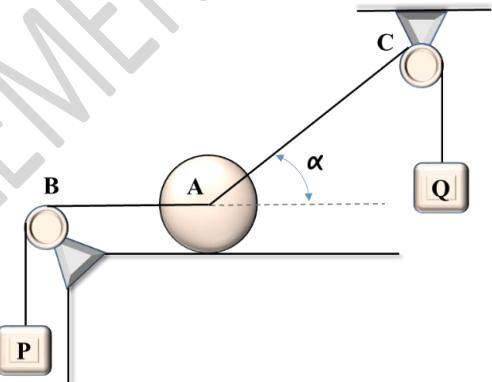
December 2023 Supplementary Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 22CV1ESICV / 22CV2ESICV


Course: Introduction to Civil Engineering



Semester: I / II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

2. Missing data, if any, may be suitably assumed.						
		UNIT - I	CO	PO	Marks	
1	a)	Elucidate the scope of transportation engineering.	CO1	PO6	6	
	b)	Compare and contrast the distinctions among plain, reinforced, and pre-stressed concrete.	CO1	PO6	8	
	c)	Classify various categories of masonry walls employed in building construction.	CO1	PO6	6	
		UNIT - II				
2	a)	Explain the rationale for implementation of 'Automation systems' in buildings.	CO2	PO7	6	
	b)	Analyze the challenges linked to urban flooding and evaluate the functions of urban flood control systems.	CO2	PO7	8	
	c)	Summarize key points related to sustainable development goals.	CO2	PO7	6	
		UNIT - III				
3	a)	State the following principles. i. Principle of superposition of forces; ii. Principle of transmissibility of forces.	CO3	PO1, PO2	4	
	b)	A ladder weighing 200 N to be kept in position as shown in Fig. 1, is resting on a smooth floor and leaning against a smooth wall. Determine the horizontal force 'P' required to prevent it from slipping when a man weighing 700 N is at a height 2m above the floor level.	CO3	PO1, PO2	8	

	c)	<p>Two smooth spheres each of radius 150 mm and weight 250 N rest in a horizontal channel having vertical walls, the distance between which is 560mm. Find the reaction at the points of contacts A, B, C, D as shown in figure below. Refer Fig. 2.</p>	CO3 PO1, PO2	8
		Fig. 2		
		OR		
4	a)	Explain the basic idealizations in mechanics.	CO3 PO1, PO2	4
	b)	<p>A ball weighing 400 N rests upon a smooth horizontal plane and has attached to its center two strings AB and AC which pass over frictionless pulleys at B and C and carry loads P and Q, respectively, as shown in Fig. 3. If the string AB is horizontal, find the angle α that the string AC makes with the horizontal when the ball is in a position of equilibrium. Also find the reaction R between the ball and the plane.</p>	CO3 PO1, PO2	8
	c)	<p>There are four forces acting on the eye bolt, three of which are indicated as shown in Fig. 4. The resultant of these four forces is $R = 3.7$ kN. Determine the fourth force.</p>	CO3 PO1, PO2	8

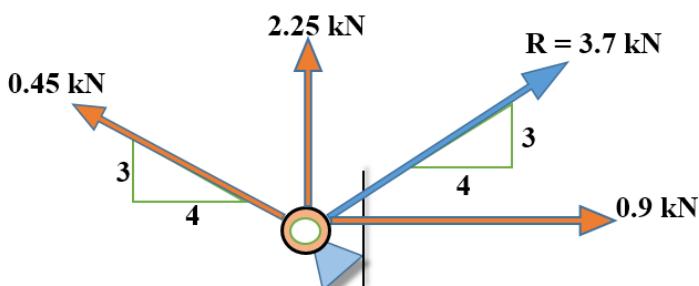


Fig. 4

UNIT - IV

5 a) Derive an expression for centroid of a semi-circle.

CO4
PO1,
PO2

6

b) Locate the centroid of shaded portion of a lamina shown in Fig. 5, if AB = 90 mm is diameter of semicircle.

CO4
PO1,
PO2

8

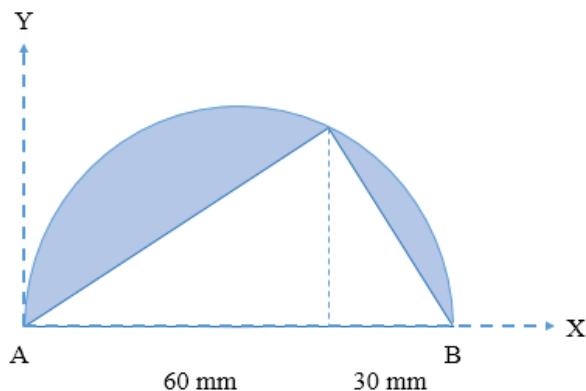


Fig. 5

c) List the differences between centroid and center of gravity.

CO4
PO1,
PO2

6

UNIT - V

6 a) State the following:-

- i. Parallel axis theorem
- ii. Radius of gyration

CO4
PO1,
PO2

6

b) Determine the moment of inertia of the composite area shown in Fig. 6 about the x and y axes indicated.

CO4
PO1,
PO2

14

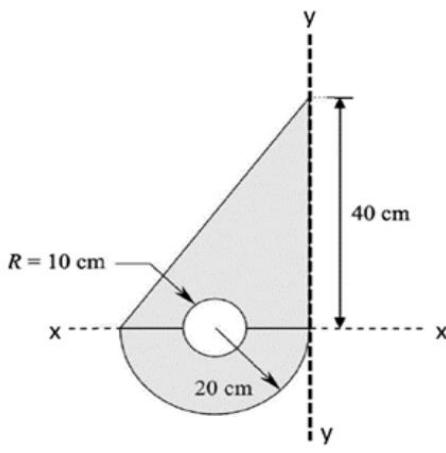


Fig. 6

OR					
7	a)	Derive the expression for moment of inertia of a triangle about its base.	CO4	PO1, PO2	6
	b)	Compute the radius of gyration of the composite section shown in Fig. 7 about the horizontal centroidal axis(X _G -Y _G)	CO4	PO1, PO2	14

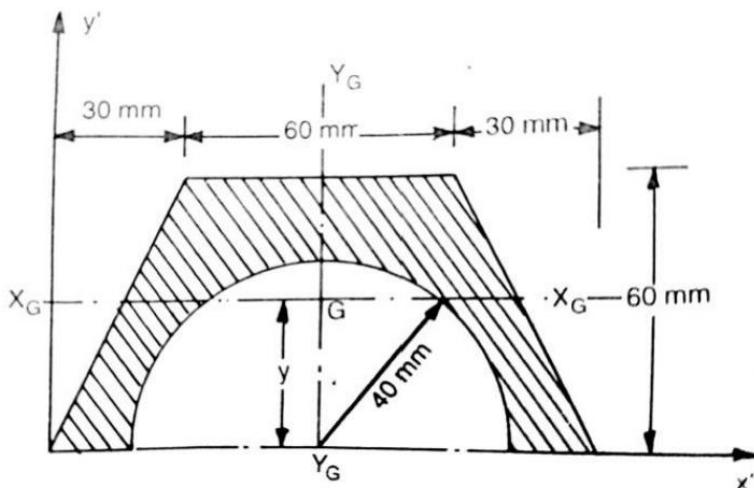


Fig. 7
