

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2025 Semester End Main Examinations

Programme: B.E.

Semester: I / II

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 23CV1ESICV/23CV2ESICV/22CV1ESICV/22CV2ESICV

Max Marks: 100

Course: Introduction to Civil Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	Explain the importance of Structural steel and Pre stressed concrete in Civil Engineering construction.	<i>CO 1</i>	<i>PO6</i>	10
	b)	Elucidate the scope of Structural Engineering & Transportation Engineering	<i>CO 1</i>	<i>PO6</i>	10
OR					
2	a)	Explain the importance of Construction Chemicals in Civil Engineering construction projects with examples.	<i>CO 1</i>	<i>PO6</i>	6
	b)	Describe the roles and responsibilities of the following disciplines of civil engineering. i. Survey Engineering ii. Construction Project Management	<i>CO 1</i>	<i>PO6</i>	8
	c)	Explain the roles and responsibilities of civil engineering professional.	<i>CO 1</i>	<i>PO6</i>	6
UNIT – II					
3	a)	Analyze the challenges linked to urban flooding and evaluate the functions of urban flood control systems.	<i>CO 2</i>	<i>PO7</i>	10
	b)	Elaborate on the following concepts i) Smart City ii) Urban air pollution.	<i>CO 2</i>	<i>PO7</i>	10
OR					
4	a)	Discuss in detail about the Sustainable Development Goals (SDGs) highlighting any 4 SDGs.			10
	b)	Explain the significance of water supply and sanitary systems in buildings and urban areas			10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT-III

5 a) Determine the resultant and its direction of the forces acting on a particle as shown in Fig -1.

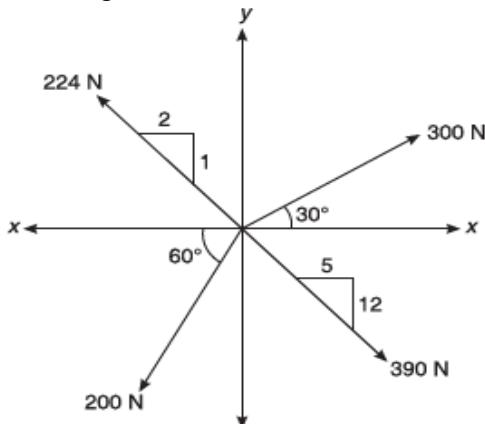


Fig-1

c) For the force system shown in Fig- 2 determine
 i) Magnitude of resultant ii) Direction of resultant
 iii) Position of resultant with respect to point D

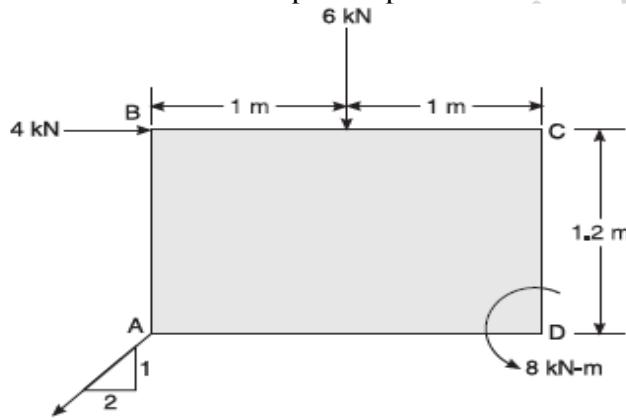
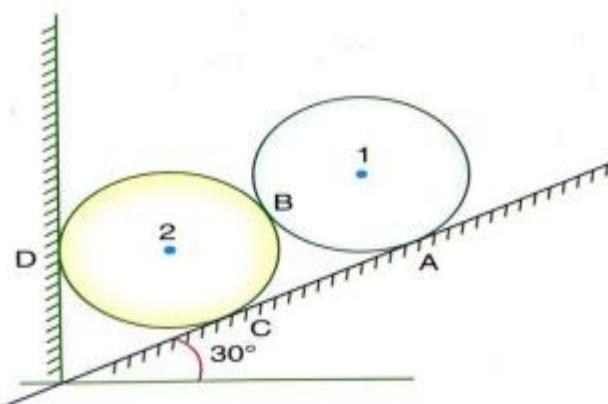
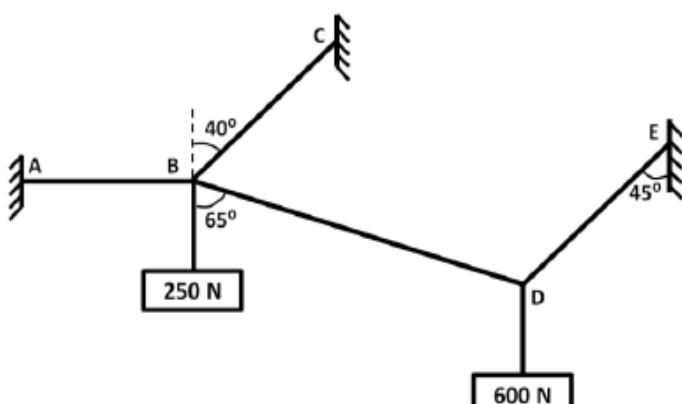
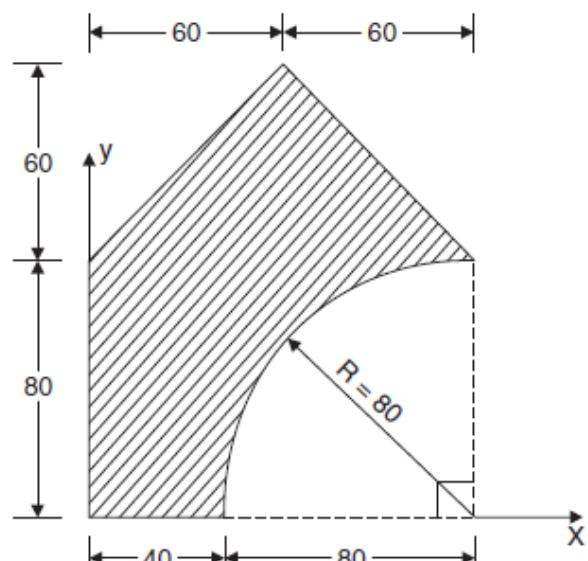
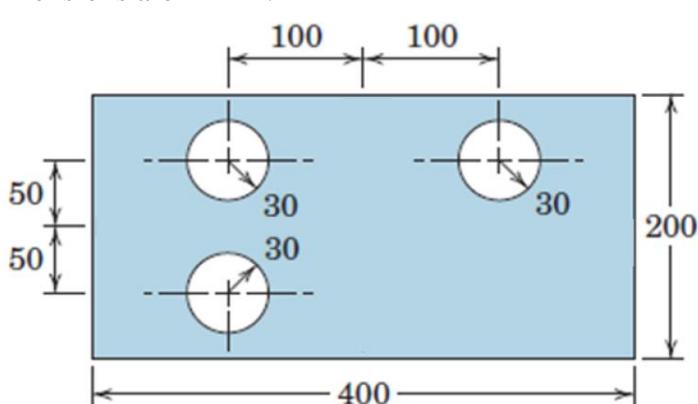
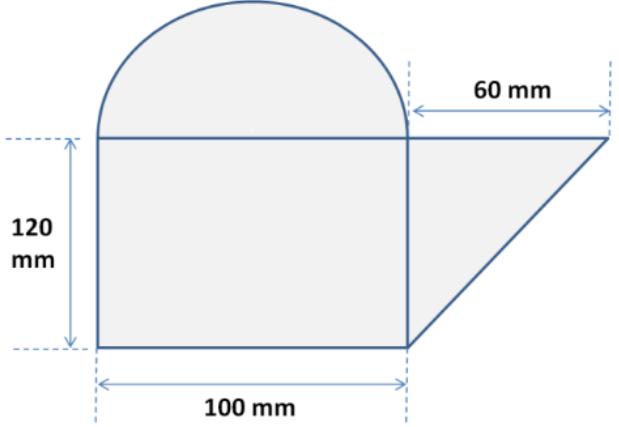
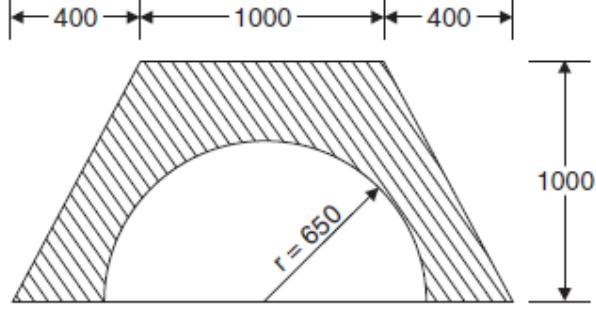
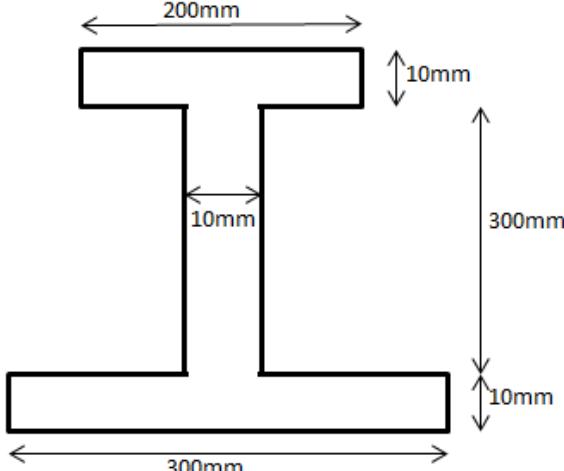


Fig-2

OR

6 a) Two identical cylinders, each weighing 500 N, are placed in a trough as shown in fig.3. Determine the reactions developed at contact points A, B, C, D. Assume all points of contact are smooth.




Fig-3

CO 3 PO2 08

CO3 PO2 12

CO 3 PO3 10

	b)	Determine the tension in different parts of the string shown in fig.4	CO 3	PO3	10
Fig-4					
		UNIT - IV			
7	a)	Determine the centroid of the shaded area shown in Fig.5. All dimensions are in mm.	CO 4	PO2	12
		Fig-5			
	b)	Derive for the centroid of semi-circle from first principles	CO 4	PO1	08
OR					
8	a)	Determine the centroid of the shaded area shown in Fig.6. All dimensions are in mm.	CO 4	PO2	10
		Figure 6.			

	b)	Locate the centroid of the area shown in Fig 7	CO 4	PO2	10
		<p>Fig 7</p>			
		UNIT - V			
9	a)	The cross-section of a plain concrete culvert is shown in Fig.8. Determine the moment of inertia about the horizontal centroidal axis. All dimensions are in mm.	CO 4	PO2	12
		<p>Fig-8</p>			
	b)	State and prove Parallel axis Theorem and Perpendicular axis Theorem.	CO 4	PO1	08
		OR			
10	a)	Determine the radius of gyration of the given I section shown in fig.9 about horizontal and vertical centroidal axis.	CO 4	PO2	15
		Fig-9			
	b)	Explain the about Polar moment of Inertia and the radius of gyration	CO 4	PO1	05
