

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 23CV3PCGDY / 22CV3PCGDY

Max Marks: 100

Course: GEODESY

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Describe the objectives and fundamental principles of chain surveying.	<i>CO1</i>	<i>PO1</i>	6
		b)	A 30 m chain was found to be 6 cm too long after chaining a distance of 4000 m. It was tested again at the end of day's work and found to be 8 cm too long after changing a total distance of 7800 m. If the chain was correct before the commencement of the work, find the true distance	<i>CO1</i>	<i>PO1</i>	8
		c)	Distinguish between the following: (i) Accuracy and precision (ii) Plan and Map (iii) Plane and Geodetic survey	<i>CO1</i>	<i>PO1</i>	6
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Define surveying. Explain the basic principles of surveying	<i>CO1</i>	<i>PO1</i>	6
		b)	A survey line BAC crosses a river A and C being on the near and distant banks respectively. Standing at D, a point 50 m measured perpendicularly to AB from A, the angle BDC = 90° and AB being 25 meters. Find the width of the river	<i>CO1</i>	<i>PO1</i>	6
		c)	Classify surveying based on instruments used, Purpose of survey and methods employed	<i>CO1</i>	<i>PO1</i>	8
UNIT - II						
3	a)	The following staff readings were taken with a level, the instrument having been shifted after the 4 th , 7 th and 10 th readings. R. L of the starting B.M is 100.00. Enter the readings in the form of a level book page and reduce the levels by the rise and fall method. Apply usual checks. The readings are, 2.500, 3.700, 3.850, 3.250, 3.650, 0.370, 0.950, 1.650, 2.850, 3.480, 3.680 and 3.270m. Use Rise and Fall method.	<i>CO2</i>	<i>PO1</i>	10	

	b)	Define digital elevation model. Explain the characteristics of DEM	CO2	PO1	10																		
		OR																					
4	a)	<p>Two points A and B are 1530 m apart across a wide river. The following reciprocal levels are taken with one level</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align: center;">Level at</th> <th colspan="2" style="text-align: center;">Readings on</th> </tr> <tr> <th></th> <th style="text-align: center;">A</th> <th style="text-align: center;">B</th> </tr> </thead> <tbody> <tr> <td style="text-align: center;">A</td> <td style="text-align: center;">2.165</td> <td style="text-align: center;">3.810</td> </tr> <tr> <td style="text-align: center;">B</td> <td style="text-align: center;">0.910</td> <td style="text-align: center;">2.355</td> </tr> </tbody> </table> <p>The error in the collimation adjustments of the level is -0.004 m in 100 m. Calculate the true difference of level between A and B and the refraction</p>	Level at	Readings on			A	B	A	2.165	3.810	B	0.910	2.355	CO2	PO1	8						
Level at	Readings on																						
	A	B																					
A	2.165	3.810																					
B	0.910	2.355																					
	b)	Define Contour. Explain the characteristics of contour	CO2	PO1	6																		
	c)	Define (i) Fore sight (ii) Back sight (iii) profile levelling (iv) Reduced level (v) Line of collimation (vi) Change point	CO2	PO1	6																		
		UNIT - III																					
5	a)	<p>The bearings of the sides of a closed traverse ABCDE are as follows</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align: center;">Side</th> <th style="text-align: center;">Fore Bearing</th> <th style="text-align: center;">Back Bearing</th> </tr> </thead> <tbody> <tr> <td style="text-align: center;">AB</td> <td style="text-align: center;">$105^0 15'$</td> <td style="text-align: center;">$285^0 15'$</td> </tr> <tr> <td style="text-align: center;">BC</td> <td style="text-align: center;">$20^0 0'$</td> <td style="text-align: center;">$200^0 0'$</td> </tr> <tr> <td style="text-align: center;">CD</td> <td style="text-align: center;">$229^0 30'$</td> <td style="text-align: center;">$49^0 30'$</td> </tr> <tr> <td style="text-align: center;">DE</td> <td style="text-align: center;">$187^0 15'$</td> <td style="text-align: center;">$7^0 15'$</td> </tr> <tr> <td style="text-align: center;">EA</td> <td style="text-align: center;">$122^0 45'$</td> <td style="text-align: center;">$302^0 45'$</td> </tr> </tbody> </table> <p>Compute the interior angles of the traverse.</p>	Side	Fore Bearing	Back Bearing	AB	$105^0 15'$	$285^0 15'$	BC	$20^0 0'$	$200^0 0'$	CD	$229^0 30'$	$49^0 30'$	DE	$187^0 15'$	$7^0 15'$	EA	$122^0 45'$	$302^0 45'$	CO3	PO1	10
Side	Fore Bearing	Back Bearing																					
AB	$105^0 15'$	$285^0 15'$																					
BC	$20^0 0'$	$200^0 0'$																					
CD	$229^0 30'$	$49^0 30'$																					
DE	$187^0 15'$	$7^0 15'$																					
EA	$122^0 45'$	$302^0 45'$																					
	b)	Explain step by step procedure for measuring horizontal angle by method of Reiteration using theodolite along with Tabular column.	CO3	PO1	6																		
	c)	Define (i) True bearing (ii) Magnetic Bearing (iii) Arbitrary bearing (iv) Whole Circle Bearing	CO3	PO1	4																		
		OR																					
6	a)	The bearing of a line AB is $133^0 30'$ and the angle ABC is $120^0 32'$. what is the bearing of BC.	CO3	PO1	4																		
	b)	The following are the bearings of the lines of the closed traverse ABCDA taken with a compass in a place where local attraction was suspected.	CO3	PO1	10																		

		<table border="1"> <thead> <tr> <th>Side</th><th>Fore Bearing</th><th>Back Bearing</th></tr> </thead> <tbody> <tr> <td>AB</td><td>$35^0 30'$</td><td>$215^0 30'$</td></tr> <tr> <td>BC</td><td>$115^0 15'$</td><td>$294^0 15'$</td></tr> <tr> <td>CD</td><td>$180^0 45'$</td><td>$3^0 45'$</td></tr> <tr> <td>DA</td><td>$283^0 45'$</td><td>$101^0 45'$</td></tr> </tbody> </table>	Side	Fore Bearing	Back Bearing	AB	$35^0 30'$	$215^0 30'$	BC	$115^0 15'$	$294^0 15'$	CD	$180^0 45'$	$3^0 45'$	DA	$283^0 45'$	$101^0 45'$		
Side	Fore Bearing	Back Bearing																	
AB	$35^0 30'$	$215^0 30'$																	
BC	$115^0 15'$	$294^0 15'$																	
CD	$180^0 45'$	$3^0 45'$																	
DA	$283^0 45'$	$101^0 45'$																	
		Correct the bearings of the lines for local attraction.																	
	c)	Explain the temporary and permanent adjustments of theodolite	<i>CO3</i>	<i>PO1</i> 6															
		UNIT - IV																	
7	a)	With a neat diagram, explain the elements of simple circular curve	<i>CO2</i>	<i>PO1</i> 8															
	b)	A simple circular curve of 350 m radius and a deflection angle 36^0 is to be set out along a proposed railway alignment. The two tangents intersect at a chainage of 1238 m. Compute and tabulate the angles and the theodolite readings to set out the curve using Rankine's method. Take peg interval as 30 m.	<i>CO2</i>	<i>PO1</i> 12															
		OR																	
8	a)	Describe the radiation, intersection, and traversing methods used in plane table surveying, accompanied by clear diagrams.	<i>CO4</i>	<i>PO1</i> 10															
	b)	Discuss the principles, advantages and drawbacks of plane table surveying.	<i>CO4</i>	<i>PO1</i> 10															
		UNIT - V																	
9	a)	Briefly explain Aerial Photogrammetry	<i>CO3</i>	<i>PO1</i> 10															
	b)	Briefly explain electro magnetic distance measurements.	<i>CO3</i>	<i>PO1</i> 10															
		OR																	
10	a)	Explain the functions and characteristics of Total station	<i>CO3</i>	<i>PO1</i> 10															
	b)	Explain the principle and functioning of satellite-based positioning systems.	<i>CO3</i>	<i>PO1</i> 10															

* * * * *