

B.M.S. College of Engineering, Bengaluru-560019

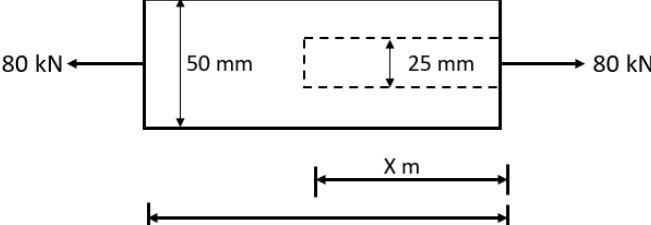
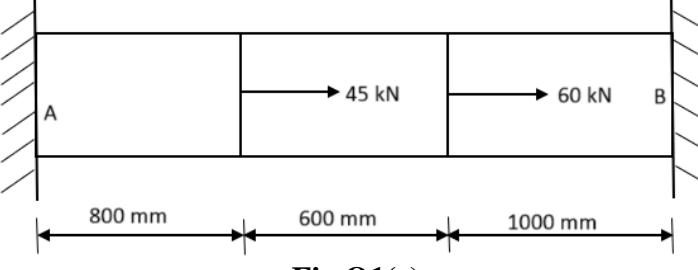
Autonomous Institute Affiliated to VTU

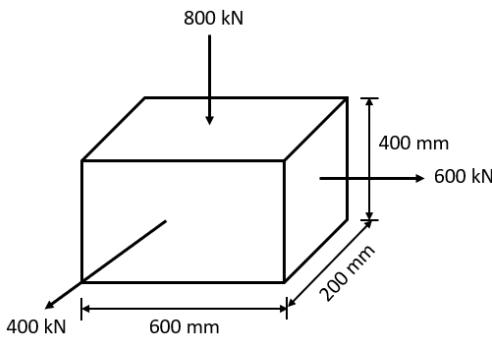
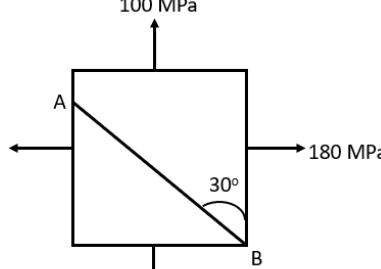
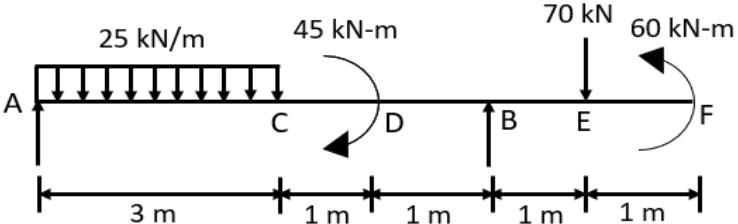
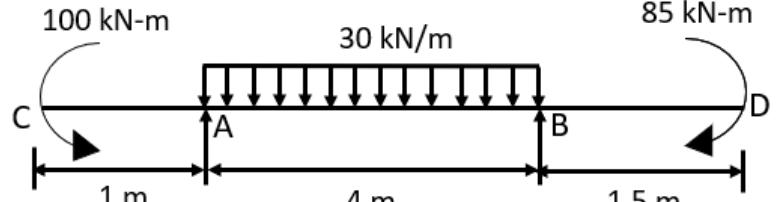
January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 19CV3PCSOM



Course: Strength of Materials





Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain briefly St. Venant's Principle with a neat sketch.	<i>CO 1</i>	<i>PO1</i> 05
		b)	<p>A circular bar of 50 mm diameter and 3.6 m length is subjected to an axial load of 80 kN as shown in the Fig.Q1(b). The bar is centrally bored with a bore diameter of 25 mm to a distance x meters such that the elongation of the bar increases by 40%. Find the value of 'x'. Take modulus of elasticity as $E = 2 \times 10^5$ MPa.</p> <p style="text-align: center;">Fig Q1(b)</p>	<i>CO 2</i>	<i>PO1, PO2</i> 07
		c)	<p>A circular bar of diameter 50 mm is rigidly held at the edges and subjected to axial forces as shown in the Fig Q1(c) below. Determine the reaction forces at the supports A and B necessary for equilibrium. Take modulus of elasticity, $E = 2 \times 10^5$ MPa.</p> <p style="text-align: center;">Fig Q1(c)</p>	<i>CO 2</i>	<i>PO1, PO2</i> 08
	2	a)	<p>A steel tube of 50 mm external diameter and 30 mm internal diameter encloses a copper rod of 25 mm diameter such that both the materials are rigidly connected at each end. If no thermal stress is induced at room temperature, determine the stress in steel and copper if the temperature is raised by 150 °C. Take $E_s = 2 \times 10^5$ MPa, $E_{cu} = 1 \times 10^5$ MPa. Coefficient of thermal expansion of steel is $12 \times 10^{-6}/^\circ\text{C}$ and copper $18 \times 10^{-6}/^\circ\text{C}$.</p>	<i>CO 2</i>	<i>PO1, PO2</i> 07

	b)	<p>A metallic block of 600 mm x 400 mm x 200 mm is subjected to the axial forces as shown in the Fig.Q2(b) below. Determine the change in volume of the block. Take $E = 2 \times 10^5$ MPa and Poisson's ratio as 0.25.</p> <p>Fig. Q2(b)</p>	CO 1	PO1, PO2	07
	c)	<p>Stress at a point in a strained material is as shown in the Fig.Q2(c) below. Determine the normal and tangential stresses on the inclined plane AB.</p> <p>Fig. Q2(c)</p>	CO 1	PO1, PO2	06
UNIT - II					
3	a)	<p>Discuss the relationship between loading, shear force and bending moment.</p>	CO 2	PO1, PO2	06
	b)	<p>For the beam as shown in the Fig. Q3(b) below, Draw SFD and BMD indicating the values of salient points.</p> <p>Fig. Q3(b)</p>	CO 2	PO1, PO2	14
	OR				
4	a)	<p>For the beam as shown in the Fig. Q4(a) below, Draw SFD and BMD indicating the values of salient points.</p> <p>Fig. Q 4(a)</p>	CO 2	PO1, PO2	12

	b)	Draw SFD and BMD for a cantilever beam of span 'L' meters carrying uniformly distributed load of 'W' kN/m over half of the span (L/2) from free end.	CO 2	PO1, PO2	08
		UNIT - III			
5	a)	A T-section with flange dimensions 250 mm x 25 mm and web of 25 mm x 350 mm is used for a simply supported beam of span 6 m. If the beam carries a u.d.l of 30 kN/m over the entire span, plot the shear stress distribution across the depth of the beam.	CO 2	PO1, PO2	10
	b)	Derive the bending stress (Bernoulli's) equation from the principles of simple bending theory.	CO 2	PO1, PO2	10
		OR			
6	a)	Prove that maximum shear stress is 1.5 times of average shear stress for a rectangular cross section.	CO 2	PO1, PO2	06
	b)	A symmetrical I section 150 mm x 380 mm (outer dimensions) is used for a simply supported beam as shown in the Fig.Q6(b) below. Plot the shear stress and bending stress distribution across the depth of the beam.	CO 2	PO1, PO2	14
		Fig.Q6(b)			
		UNIT - IV			
7	a)	Derive an expression for Euler's buckling load for a column with both ends are hinged.	CO 2	PO1, PO2	10
	b)	A hollow rectangular cross section is used for a column with its external dimensions of 300 mm x 500 mm having a uniform thickness of 20 mm all around. The column is 3.5 m long with supports fixed at both the ends. Determine the crippling load using Euler's equation. Assume Young's modulus of the material = 130 GPa.	CO 2	PO1, PO2	10
		OR			
8	a)	Discuss the limitations of Euler's and Rankine's equations in the assessment of crippling load.	CO 2	PO1, PO2	06
	b)	Explain the terms: Slenderness ratio, radius of gyration and effective length.	CO 2	PO1, PO2	06
	c)	A symmetrical I section of flanges 150 mm x 20 mm and web 20 mm x 200 mm is used for a column of length 4 m fixed at both ends. Determine the crippling load using Rankine's equation. Take the crushing strength = 450 MPa and Rankine's constant, $a = 1/1600$.	CO 2	PO1, PO2	08
		UNIT - V			
9	a)	With usual notations, derive the torsional equation for circular shafts.	CO 2	PO1, PO2	10

	b)	A hollow circular shaft has to transmit 250 kW power at 120 rpm such that the shear stress does not exceed 60 MPa. If the ratio of internal to external diameter of the shaft is 3/4 and the value of modulus of rigidity is 85 GPa, find the dimensions of the shaft and angle of twist in a length of 3 m.	CO 2	PO1, PO2	10
		OR			
10	a)	Derive an expression for longitudinal stress and hoop stress for thin cylinders.	CO 2	PO1, PO2	10
	b)	A Closed cylindrical vessel made of steel plates of 5 mm thick carries a fluid under a pressure of 4 MPa. The diameter of the cylinder is 250 mm and length is 900 mm. Calculate the longitudinal and hoop stress in the cylinder wall and also determine the changes in the diameter, length and volume of the cylinder. Take $E = 2 \times 10^5$ MPa and Poisson's ratio as 0.24.	CO 2	PO1, PO2	10
