

B.M.S. College of Engineering, Bengaluru-560019

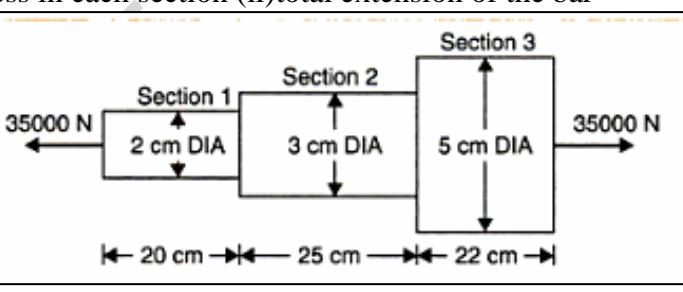
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

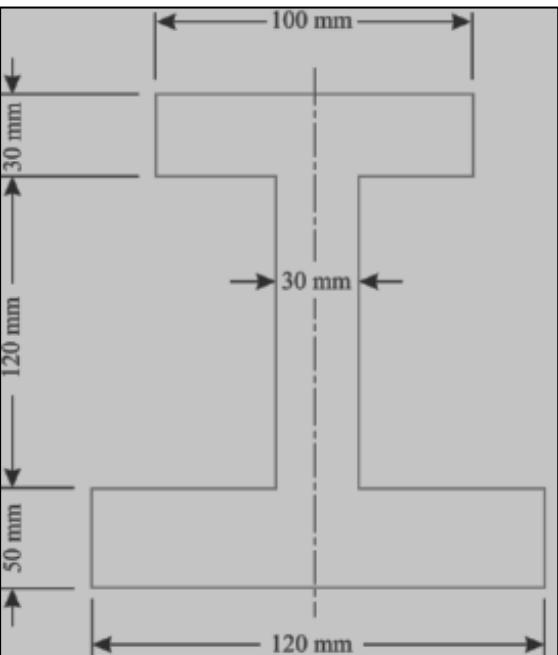
Programme: B.E.

Branch: Civil Engineering

Course Code: 23CV3PCSOM / 22CV3PCSOM


Course: Strength of Materials

Semester: III


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
1	a)	Explain the terms – (i). Poisson's ratio (ii). Rigidity Modulus (iii). Modulus of Elasticity (iv). Factor of safety	CO 1	PO1, PO2	08
	b)	Find the Young's modulus of a Brass rod of diameter 25 mm and a length of 250 mm subjected to a tensile load of 50 kN when the extension of the rod is equal to 0.3 mm.	CO 1	PO1, PO2	04
	c)	A rod is 2m long at a temperature of 10°C. Find the expansion of the rod, when the temperature is raised to 80°C. If the expansion is prevented, find the stress induced in the material of the rod. Take $E = 1.0 \times 10^5 \text{ MN/m}^2$ and $\alpha = 0.000012/\text{°C}$.	CO 1	PO1, PO2	08
OR					
2	a)	An axial pull of 35000 N is acting on a bar consisting of three lengths as shown in the fig. Q 2(a). If Young's modulus is $2.1 \times 10^5 \text{ N/mm}^2$, determine the following : (i) stress in each section (ii) total extension of the bar	CO 1	PO1, PO2	12
UNIT - II					
3	a)	A simply supported beam of span 'L' is subjected to a distributed load varying uniformly from '0' at left support to 'w' KN/m at the right support. Draw the BMD & SFD indicating salient values.	CO 2	PO1, PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	A determinate beam 6m long is supported at two points, one at its extreme left end and the other at 2m from extreme right end. The beam carries an UDL of 2 KN/m over its entire length. A point load of 2 KN also acts its extreme right end. Draw the shear force and bending moment diagrams for the beam. Locate all the salient points.	CO 2	PO1, PO2	12
UNIT - III					
4	a)	List the assumptions made in the simple bending theory.	CO 2	PO1, PO2	03
	b)	Prove that in case of a beam of a rectangular cross-section, the maximum shear stress developed is 1.5 times the average shear stress.	CO 2	PO1, PO2	05
	c)	A simply supported beam of span 8m has cross-section as shown in the fig. Q. 4(c). If the maximum permissible bending stress in tension is limited to 30 MN/m^2 and in compression is 45 MN/m^2 find the intensity of UDL the beam can carry over its entire span. Also calculate the maximum bending stresses set up in the section.	CO 2	PO1, PO2	12
<p>Fig.Q.4(c)</p>					
UNIT - IV					
5	a)	Explain Mohr's circle of stress and its uses.	CO 1	PO1, PO2	04
	b)	A rectangular bar of cross-sectional area $10,000\text{mm}^2$ is subjected to an axial load of 20kN. Determine the normal and shear stresses on a section which is inclined at an angle 30° measured counter clock wise from the normal cross-section of the bar.	CO 1	PO1, PO2	06

	c)	<p>The state of stress at a point in a strained material is as shown in the fig. Q. 5 (c). Determine the following –</p> <ol style="list-style-type: none"> The direction of the principal planes, The magnitude of principal stresses, The magnitude of maximum shear stress and its direction. <p>Indicate all the above in the element.</p> <p>Fig.Q.5(c)</p>	CO 1	PO1, PO2	10
--	----	---	------	-------------	----

UNIT - V					
6	a)	State the assumptions made in the Euler's column theory. Obtain the Euler's equation for crippling load of a long column with both the ends hinged.	CO 2	PO1, PO2	12
	b)	A hollow mild steel tube 6m long, 4 cm internal diameter and 5 mm thick is used as a strut with both ends hinged. Find the Euler's crippling load and safe load taking factor of safety as 3.0. Take $E = 2 \times 10^5 \text{ N/mm}^2$.	CO 2	PO1, PO2	08
OR					
7	a)	Explain the following terms – (i). Pure torsion (ii). Polar modulus (iii). Torsional rigidity	CO 2	PO1, PO2	06
	b)	In a hollow circular shaft of outer and inner diameters of 20 cm and 10 cm respectively, the shear stress is not to exceed 40 N/mm^2 . Find the maximum torque which the shaft can safely transmit.	CO 2	PO1, PO2	04
	c)	A hollow shaft is to transmit 300 kW power at 80 rpm. If the shear stress is not to exceed 60 N/mm^2 and internal diameter is 0.6 of the external diameter, find the external and internal diameters assuming that the maximum torque is 1.4 times the mean torque.	CO 2	PO1, PO2	10
