

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 23CV4PCCON

Course: Concrete Technology

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of IS 10262- 2019 is permitted.

		UNIT – I	CO	PO	Marks
1	a)	Illustrate the process of hydration and explain the role of different Bogue's compound in the hydration process.	<i>CO 1</i>	<i>PO1</i>	10
	b)	Discuss the effect of size, shape, texture and specific weight of the aggregates on the properties of concrete.	<i>CO 1</i>	<i>PO1</i>	10
		OR			
2	a)	Identify Bouge's Compounds and discuss their relations in attaining strength and setting of concrete.	<i>CO 1</i>	<i>PO1</i>	10
	b)	Explain the mechanism of action of super plasticizer in modifying the properties of concrete.	<i>CO 1</i>	<i>PO1</i>	6
	c)	List the different sustainable materials used in concrete alternate to cement and natural aggregates.	<i>CO 1</i>	<i>PO1</i>	4
		UNIT – II			
3	a)	Define workability and explain the factors affecting workability.	<i>CO 1</i>	<i>PO1</i>	10
	b)	Illustrate the concept of segregation and bleeding considering the practical examples.	<i>CO 1</i>	<i>PO1</i>	10
		UNIT - III			
4	a)	Differentiate between nominal mix and design mix.	<i>CO 2</i>	<i>PO1</i>	4
	b)	Arrive at the concrete mix design concrete. B-1 STIPULATIONS FOR PROPORTIONING a) Grade designation: M40 b) Type of cement: OPC 53 grade conforming to IS 269 c) Type of mineral admixture: GGBS d) Maximum nominal size of aggregate: 20 mm e) Minimum cement content: Severe (for reinforced concrete) f) Workability: 100 mm (slump) g) Method of concrete placing: Pumping	<i>CO 2</i>	<i>PO3</i>	16

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
 Revealing of identification, appeal to evaluator will be treated as malpractice.

		<p>h) Degree of supervision: Good</p> <p>j) Type of aggregate: Angular</p> <p>k) Maximum cement content: 450 kg/m³</p> <p>m) Chemical admixture type: Super plasticizer</p> <p>B-2 TEST DATA FOR MATERIALS</p> <p>a) Specific gravity of cement 3.12</p> <p>b) Specific gravity of GGBS: 2.95</p> <p>c) Specific gravity of 1) Coarse aggregate (at SSD condition): 2.70 2) Fine aggregate (at SSD condition): 2.65 3) Chemical admixture: 1.145</p>		
		UNIT – IV		
5	a)	Explain the factors affecting compressive strength of a concrete	<i>CO 2</i>	<i>POI</i> 10
	b)	Explain the working principle and application of Ultrasonic pulse velocity test.	<i>CO 2</i>	<i>POI</i> 10
		OR		
6	a)	Demonstrate the process to determine the modulus of elasticity of concrete.	<i>CO 2</i>	<i>POI</i> 10
	b)	Explain drying and autogenous shrinkage in concrete	<i>CO 2</i>	<i>POI</i> 10
		UNIT – V		
7	a)	Discuss the various factors affecting the durability of concrete.	<i>CO 2</i>	<i>POI</i> 10
	b)	Demonstrate the process of carbonation and alkali aggregate reaction in concrete.	<i>CO 2</i>	<i>POI</i> 10
