

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 23CV4PCCON / 22CV4PCCON

Max Marks: 100

Course: CONCRETE TECHNOLOGY

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a) Identify Bouge's compounds and explain their role in the setting and hardening of concrete.	CO 1	PO1	10																
		b) Explain the role of chemical admixtures in improving the fresh state behavior of concrete, with a focus on the mechanism of action of superplasticizers on modifying the fresh property of concrete.	CO 1	PO1	10																
OR																					
	2	a) Describe the microstructural features of the ITZ (Interfacial transition zone) in concrete and assess the role of SCMs (Supplementary cementitious materials) in modifying its behavior.	CO 1	PO1	10																
	b)	Classify different types of aggregates based on their size, shape, specific gravity, and texture.	CO 1	PO1	5M																
	c)	Arrive at the fineness modulus for the given sample and identify the type of sand as per specification based on fineness modulus. Note: Weight is given in grams.	CO 1	PO1	5M																
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align: center;">BS sieve</th> <th style="text-align: center;">Weight retained</th> </tr> </thead> <tbody> <tr> <td style="text-align: center;">4.75 mm</td> <td style="text-align: center;">0 g</td> </tr> <tr> <td style="text-align: center;">2.36 mm</td> <td style="text-align: center;">15 g</td> </tr> <tr> <td style="text-align: center;">1.18 mm</td> <td style="text-align: center;">25 g</td> </tr> <tr> <td style="text-align: center;">600 μm</td> <td style="text-align: center;">50 g</td> </tr> <tr> <td style="text-align: center;">300 μm</td> <td style="text-align: center;">40 g</td> </tr> <tr> <td style="text-align: center;">150 μm</td> <td style="text-align: center;">20 g</td> </tr> <tr> <td style="text-align: center;">Pan</td> <td style="text-align: center;">10 g</td> </tr> </tbody> </table>	BS sieve	Weight retained	4.75 mm	0 g	2.36 mm	15 g	1.18 mm	25 g	600 μm	50 g	300 μm	40 g	150 μm	20 g	Pan	10 g			
BS sieve	Weight retained																				
4.75 mm	0 g																				
2.36 mm	15 g																				
1.18 mm	25 g																				
600 μm	50 g																				
300 μm	40 g																				
150 μm	20 g																				
Pan	10 g																				
UNIT - II																					
	3	a) Define workability and factors affecting the workability of concrete.	CO 1	PO1	10																
	b)	Differentiate between segregation and bleeding in fresh concrete.	CO 1	PO1	5																
	c)	Discuss the different methods of curing.	CO 1	PO1	5																

		OR			
4	a)	Demonstrate the slump test and interpret the different types of slumps observed.	CO 1	POI	6
	b)	Explain the process of manufacturing of concrete and transporting the concrete to the site.	CO 1	POI	6
	c)	Elaborate on plastic shrinkage, focusing on its influence on concrete quality and practical approaches to minimize it.	CO 1	POI	8
	UNIT - III				
5	a)	Compare between Nominal Mix and Design Mix.	CO 2	POI	5
	b)	<p>Arrive at the concrete mix design concrete.</p> <p>STIPULATIONS FOR PROPORTIONING</p> <p>Grade designation: M40</p> <p>Type of cement: OPC 43 grade conforming to IS 269</p> <p>Type of mineral admixture: Fly ash conforming to IS 3812 (Part1)</p> <p>Maximum nominal size of aggregate: 20 mm</p> <p>Exposure condition: Severe (for reinforced concrete)</p> <p>Workability: 125 mm (slump)</p> <p>Method of concrete placing: Pumping</p> <p>Degree of supervision: Good</p> <p>Type of aggregate: Crushed sub angular aggregate</p> <p>Minimum cement content: 320 kg/m³</p> <p>Maximum cement content: 450 kg/m³</p> <p>Chemical admixture type: Superplasticizer</p> <p>TEST DATA FOR MATERIALS</p> <p>Specific gravity of cement: 3.15</p> <p>Specific gravity of fly ash: 2.20</p> <p>Specific gravity of</p> <ul style="list-style-type: none"> 1) Coarse aggregate (at SSD condition): 2.65 2) Fine aggregate (at SSD condition): 2.60 3) Chemical admixture: 1.145 <p>Fine aggregates –Zone III</p> <p>Note: Assume any missing data suitably.</p>	CO 2	PO3	15
		OR			
6	a)	Discuss the role of environmental exposure conditions in determining the required grade of concrete.	CO 2	POI	5
	b)	<p>Design a concrete mix for M 30 grade of concrete using IS 10262 – 2019 for the following data.</p> <p>Grade of concrete – M 30</p> <p>Type of cement- PPC, 43 grade</p> <p>Maximum size of the aggregates – 20 mm</p> <p>Minimum cement content – 320 kg/m³</p> <p>Maximum cement content – 450 kg/m³</p> <p>Maximum W/C ratio – 0.42 (as per IS 456-2000)</p> <p>Workability – 100 mm slump</p> <p>Exposure condition – Severe</p> <p>Type of aggregates – Angular aggregates</p> <p>Supervision- Good</p>	CO 2	PO3	15

		<p><u>Material properties:</u></p> <p>Specific gravity of cement: 3.05</p> <p>Specific gravity of Coarse aggregate (at SSD condition): 2.70</p> <p>Specific gravity of Fine aggregate (at SSD condition): 2.65</p> <p>Specific gravity of Chemical admixture: Super plasticizer – 1.12</p> <p>Chemical admixture – super plasticizer with 1% optimum dosage.</p> <p>Water absorption – Coarse aggregate -0.5%,</p> <p>Water absorption – Fine aggregate -1%</p> <p>Fine aggregates –Zone II</p> <p>Note: Assume any missing data suitably.</p>			
		UNIT - IV			
7	a)	Discuss the basic mechanical (hardened) properties of concrete and conducting tests on the same.	CO 2	POI	10
	b)	Discuss the preparations made before testing the rebound hammer and ultrasonic pulse velocity test and limitations of the tests in assessing the quality of the concrete.	CO 2	POI	10
		OR			
8	a)	Differentiate between drying shrinkage and autogenous shrinkage.	CO 2	POI	10
	b)	Illustrate the nondestructive test evaluation process using the Rebound hammer test.	CO 2	POI	10
		UNIT - V			
9	a)	Define durability and explain the factors affecting the durability of concrete.	CO 2	POI	10
	b)	Explain the mechanism behind the corrosion of steel in the concrete & also the factors causing corrosion.	CO 2	POI	10
		OR			
10	a)	Summarize the basic hardened tests conducted to assess the strength of the concrete and also compare their interrelation properties.	CO 2	POI	10
	b)	Explain the mechanism of sulphate attack in concrete and control measures for the same.	CO 2	POI	10
