

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 22CV4PCENV

Max Marks: 100

Course: Environmental Engineering I

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks																
1	a)	Enumerate the factors affecting percapita demand.	CO1	PO1	10																
	b)	Population data for a city from past census records is given in the following table. <table border="1"> <tr> <td>Year</td><td>1951</td><td>1961</td><td>1971</td><td>1981</td><td>1991</td><td>2001</td><td>2011</td></tr> <tr> <td>Population</td><td>12000</td><td>16500</td><td>26800</td><td>41500</td><td>57500</td><td>68000</td><td>74100</td></tr> </table> Forecast the population of city for the year 2031 by (a) Arithmetic increase method (b) Geometric increase method (c) incremental increase method	Year	1951	1961	1971	1981	1991	2001	2011	Population	12000	16500	26800	41500	57500	68000	74100	CO1	PO1	10
Year	1951	1961	1971	1981	1991	2001	2011														
Population	12000	16500	26800	41500	57500	68000	74100														
		UNIT - II																			
2	a)	Explain briefly the factors to be considered in selecting a suitable site for the intake structure.	CO2	PO1	7																
	b)	A city has a population of 1,50,000. Water is to be supplied at the rate of 160 lpcd. If the static lift of the pump is 40m, Calculate the BHP of motor. The rising main is 300m long and its diameter is 50cm. Assume that motor efficiency is 85%, pump efficiency is 60%, $f = 0.04$ and the peak hour demand is 1.5 times the average demand.	CO2	PO 2	8																
	c)	With the neat sketch, illustrate economical diameter of rising main.	CO2	PO 2	5																
		OR																			
3	a)	Briefly explain water borne diseases with control measures.	CO2	PO1	7																
	b)	Discuss the health and environmental significance of following parameters with standards. (i) Fluoride (ii) Nitrate (iii) Hardness (iv) Chloride	CO2	PO2	8																
	c)	Define MPN. List and explain any one test for the testing of coliform group.	CO2	PO 1	5																

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
4	a)	Calculate the dimensions of a rectangular sedimentation basin for the following data: Also Check for surface loading rate. Volume of water to be treated = 3MLD ; Detention time= 4 hrs ; Velocity of flow = 10cm/min; working depth of water = 3m .	CO2	PO 3	5
	b)	Enumerate any 5 potential filter troubles in filters	CO2	PO2	10
	c)	Explain briefly any 5 objectives of aeration.	CO2	PO 2	5
OR					
5	a)	12MLD water is treated in a treatment plant daily using ferrous sulphate and lime. If the dosage of ferrous sulphate is 10mg/l determine the total quantity of ferrous sulphate and quick lime required daily.	CO2	PO 3	5
	b)	Compare slow and rapid sand filters.	CO2	PO 2	10
	c)	List common coagulants used in water treatment. Enumerate the factors affecting coagulation.	CO2	PO 2	5
UNIT - IV					
6	a)	Enumerate any five minor methods of disinfection.	CO3	PO 1	10
	b)	Describe reverse osmosis process of softening of water treatment with merits and demerits.	CO3	PO 2	10
UNIT - V					
7	a)	List and with the help of neat sketch illustrate the working and suitability of different water distribution layouts.	CO3	PO 3	10
	b)	Explain the drawbacks of intermittent system of water supply.	CO3	PO 2	5
	c)	Enumerate the techniques of water conservation.	CO3	PO 1	5
