

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22CV4PCENV

Course: Environmental Engineering -1

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	<i>CO</i>	<i>PO</i>	Marks															
1	a)	Define Per Capita Demand. Explain the Factors effecting per capita Demand.		<i>CO1</i>	<i>PO1</i>	06															
	b)	For the following data given below, estimate the future population of a city in the year 2042 by (i) AIM, (ii) GIM, and (iii) IIM. Comment on their relative merits and demerits of each method.		<i>CO1</i>	<i>PO1</i>	08															
		<table border="1"> <tr> <td>Year</td><td>1972</td><td>1982</td><td>1992</td><td>2002</td><td>2012</td></tr> <tr> <td>Population</td><td>81,420</td><td>12,5000</td><td>1,70,000</td><td>2,20,000</td><td>2,30,000</td></tr> </table>	Year	1972	1982	1992	2002	2012	Population	81,420	12,5000	1,70,000	2,20,000	2,30,000							
Year	1972	1982	1992	2002	2012																
Population	81,420	12,5000	1,70,000	2,20,000	2,30,000																
	c)	Define (i) Wholesome water (ii) Design Period (iii) Fire Demand		<i>CO1</i>	<i>PO1</i>	06															
			UNIT - II																		
2	a)	With the help of diagram, explain twin well type of river intake.		<i>CO2</i>	<i>PO1,2</i>	08															
	b)	A Centrifugal pump is driven by electric motor which lifts water to a total height of 50 m from the reservoir to discharge end. The pump efficiency is 77 % and the motor efficiency is 85 %. The lift is 300 m long and 10 cm diameter pipe and the pumping rate is 1500 L/min. If $4f = 0.025$ and power cost is 25 paisa/ KW, what is the cost of power for pumping 4 ML of water.		<i>CO2</i>	<i>PO1,2</i>	08															
	c)	With a sketch, illustrate economical diameter of rising main.		<i>CO2</i>	<i>PO1,2</i>	04															
			OR																		
3	a)	Give the maximum permissible limits as per the BIS for the following water quality parameters. Also indicate their health significance i) Fluoride ii) pH iii) Total hardness iv) Nitrate v) Turbidity		<i>CO2</i>	<i>PO1,2</i>	10															
	b)	In a water quality testing center, the following data is obtained on E-coli bacteria. Determine the MPN value and comment on the result obtained.		<i>CO2</i>	<i>PO1,2</i>	04															
		<table border="1"> <tr> <td>Sample size</td><td>10ml</td><td>1ml</td><td>0.1ml</td><td>0.01ml</td></tr> <tr> <td>portions</td><td>5</td><td>5</td><td>5</td><td>5</td></tr> <tr> <td>Positive No</td><td>5</td><td>4</td><td>2</td><td>1</td></tr> </table>	Sample size	10ml	1ml	0.1ml	0.01ml	portions	5	5	5	5	Positive No	5	4	2	1				
Sample size	10ml	1ml	0.1ml	0.01ml																	
portions	5	5	5	5																	
Positive No	5	4	2	1																	

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Briefly explain water borne diseases.	CO2	PO1,2	06
		UNIT - III			
4	a)	With help of the neat labelled diagram, explain the working of circular sedimentation tank.	CO2	PO1,2	08
	b)	Design a sedimentation tank rectangular in shape to treat 2 million liters of raw water with detention period of 2 hours and overflow rate less than 45,000 liters per day per unit surface area. The water contains 700 mg/L of suspended solids, 35% of which are settleable, calculate the volume of sludge storage for one month cleaning period	CO2	PO1,2	08
	c)	Explain Coagulation and flocculation process.	CO2	PO1,2	04
		OR			
5	a)	With help of the neat labelled diagram, explain the working of Rapid sand filter	CO2	PO1,2	08
	b)	Design a co-agulation sedimentation tank with continuous flow for treating water for a population of 45000 persons with average daily consumption of 135 L/person. Assume surface loading rate of 0.9 m ³ /m ² /hr. and that weir loading rate is within acceptable limits.	CO2	PO1,2	08
	c)	With diagram explain cascade type of aerator.	CO2	PO1,2	04
		UNIT - IV			
6	a)	With diagram illustrate break point chlorination.	CO3	PO1	06
	b)	Explain reverse osmosis process with the help of neat sketch.	CO3	PO1	06
	c)	Define (i) Microfiltration (ii) De-chlorination (iii) Super chlorination (iv) Ultrafiltration	CO3	PO1	08
		UNIT - V			
7	a)	Illustrate with diagram different distribution network systems.	CO3	PO1	08
	b)	Explain (i) Bell and Spigot joint (ii) Collar joints (iii) Simplex joints	CO3	PO1	06
	c)	Explain any two water conservation techniques.	CO3	PO1	06
