

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 23CV4PCENV

Max Marks: 100

Course: Environmental Engineering - I

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I					CO	PO	Marks										
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	With the help of following data, estimate the future population of town in the year 2030, 2040 and 2050 using Arithmetic, Geometrical and incremental increase method					CO1	PO1	10									
			<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 20%;">Year</td><td style="width: 20%;">1990</td><td style="width: 20%;">2000</td><td style="width: 20%;">2010</td><td style="width: 20%;">2020</td></tr> <tr> <td>Population</td><td>8000</td><td>12000</td><td>17000</td><td>22500</td></tr> </table>					Year	1990	2000	2010	2020	Population	8000	12000	17000	22500		
Year	1990	2000	2010	2020															
Population	8000	12000	17000	22500															
	b)	With neat diagram explain the variations in water demand					CO1	PO1	10										
OR																			
2	a)	Define per capita water demand and explain the factors affecting per capita demand.					CO1	PO1	10										
	b)	Describe fire demand? Calculate the fire demand of a city having a population of 250000 using Kuichling's formula					CO1	PO1	4										
	c)	Explain the various types of water demands required for planning a water supply scheme for a city					CO1	PO1	6										
UNIT - II																			
3	a)	Illustrate with a sketch, the most economical diameter of pumping main?					CO2	PO1	6										
	b)	With neat diagram explain reservoir intake structure.					CO2	PO1	8										
	c)	From a clear water reservoir 2.5 m deep at level 32, water is pumped to an elevation of RL 80 at a constant rate of 810000 liters for a length of 1200 m. Take $f = 0.04$. Determine the economical diameter of pipe and total head					CO2	PO1	6										
OR																			
4	a)	Give the maximum acceptable limits for the following water quality parameters as per IS 10500: 2012, also discuss their undesirable health effects, if they exceed the prescribed limit in public water supply. (i) pH (ii) Nitrate (iii) Chlorides (iv) Iron (v) Fluorides					CO2	PO1	10										

	b)	Explain the physical, chemical and biological characteristics of water	CO2	PO1	10
		UNIT - III			
5	a)	Design a rectangular sedimentation tank to treat 2.4 ML of raw water per day. The detention period may be assumed as 3 hours.	CO2	PO1	8
	b)	With a neat sketch, explain the working principle of circular sedimentation tank,	CO2	PO1	8
	c)	Define co agulation and flocculation.	CO2	PO1	4
		OR			
6	a)	With a neat sketch, explain the working principle of slow sand filters	CO2	PO1	10
	b)	Design six slow sand filter beds from the following data: Population to be served: 50,000 persons Per capita demand: 150 L/head/day Rate of filtration: 180 L/hr/sq.m Length of each bed: twice the breadth. Assume maximum demand as 1.8 times the average daily demand. Also assume one unit out of six to be kept as standby.	CO2	PO1	10
		UNIT - IV			
7	a)	Define (i) Double chlorination (ii) Residual chlorine (iii) De chlorination (iv) Pre chlorination	CO2	PO1	4
	b)	With the help of neat diagram describe the process of Break point chlorination	CO2	PO1	6
	c)	Explain in detail Micro filtration and Ultrafiltration	CO2	PO1	10
		OR			
8	a)	Explain in detail Nano filtration and Reverse osmosis	CO2	PO1	10
	b)	With the help of neat diagram explain Zeolite process for water softening	CO2	PO1	10
		UNIT - V			
9	a)	Explain in detail radial system, dead end system and Gridiron system of water distribution system with neat diagram	CO3	PO1	10
	b)	Explain in detail grey water recycling and rain water harvesting	CO3	PO1	10
		OR			
10	a)	Explain the various joints in sewer	CO3	PO1	10
	b)	With a neat diagram explain the plumbing system in building	CO3	PO1	10
