

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

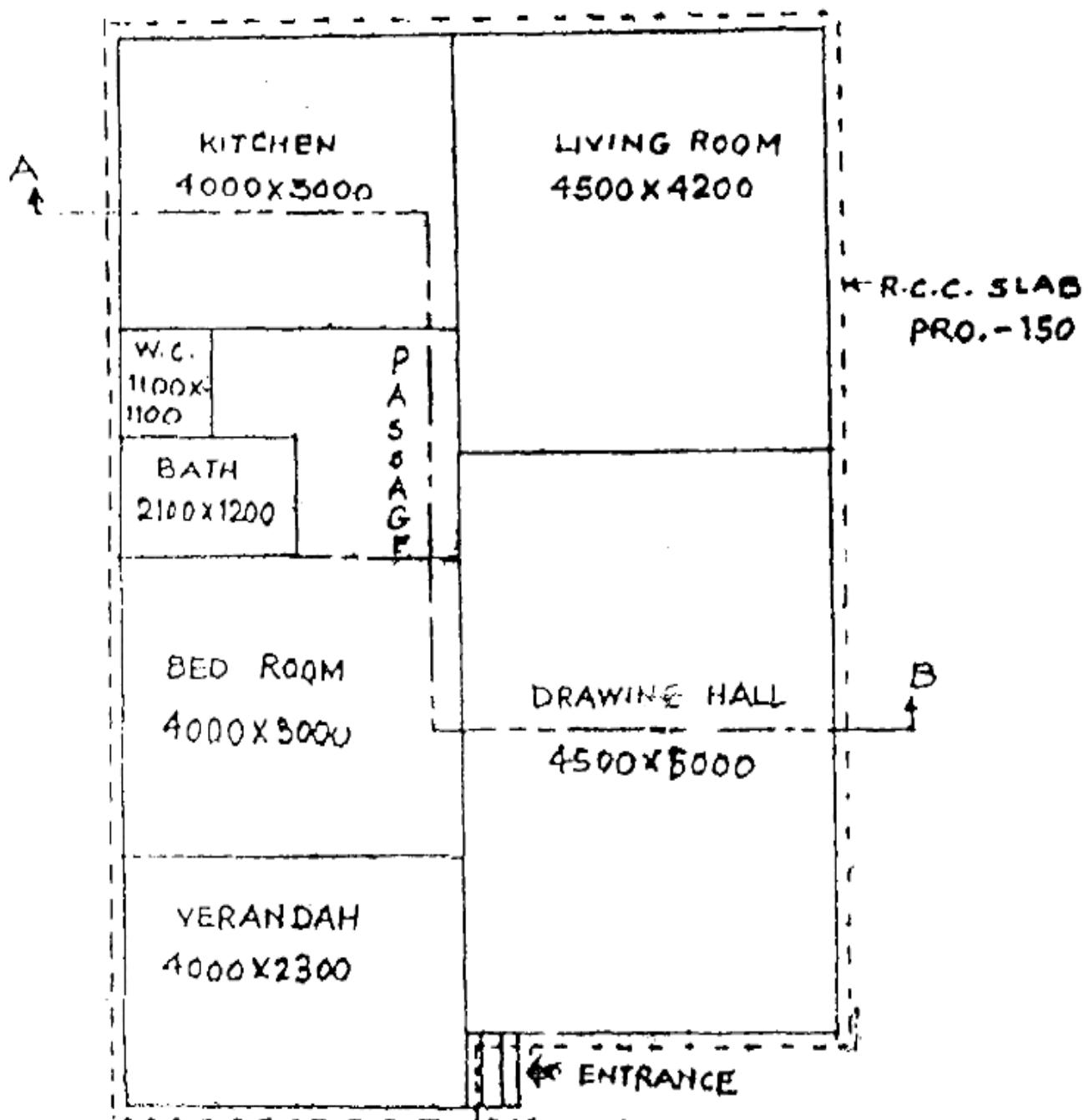
Semester: IV

Branch: Civil Engineering

Duration: 4 hrs.

Course Code: 22CV4PCBPD

Max Marks: 100


Course: Building Planning and Drawing

Instructions: 1. Unit I & III are compulsory. Unit II has a choice

2. Missing data, if any, may be suitably assumed and to be mentioned.

	UNIT - I	CO	PO	Marks
1	Prepare a bubble diagram (connectivity diagrams) and develop line diagram for primary health centre, with following facilities. i) Entrance and waiting space, ii) Doctor's room – 2 nos, iii) Examination room, iv) Operation theatre, v) Medical store, vi) Office, vii) Laboratory, viii) Male ward – 10 beds, ix) Female ward – 10 beds, x) Toilet block. Also, provide the schedule of openings.	<i>CO3</i>	<i>PO3</i>	20
	UNIT - II			
2	Draw to a suitable scale a single shutter 6 panel teak wood door of size 1.2m x 2.1m	<i>CO2</i>	<i>PO3</i>	20
	OR			
3	Draw a steel roof Truss of Span 12 m.	<i>CO2</i>	<i>PO3</i>	20
	UNIT - III			
4	The line diagram of a residential building is given in Figure - 1 below. Draw to a suitable scale, a) Plan at sill level, b) Front elevation, c) Section on X – X, d) Schedule of openings. e) Plot Coverage, Carpet Area and FAR if the plot size is 14 x 15 m Note: All load bearing walls are of 230mm thick and internal walls are of 115mm thick, BBM built on SSM foundation. Roof is RCC and the roof height is 3.0m from floor finish. Lintel level is 2.1m above the plinth level. Assume suitable size of openings.	<i>CO1</i>	<i>PO3</i>	60

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

B.M.

* * * * *

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22CV4PCCON

Course: CONCRETE TECHNOLOGY

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of IS-10262-2019 is permitted.

			UNIT - I		
			CO	PO	Marks
1	a)	What is hydration. Discuss the effect of hydration on strength development of concrete.	CO 1	PO1	08
	b)	Define Fineness Modulus. How it is determined for fine aggregate.	CO 1	PO1	07
	c)	Summarize the role of transition zone on the strength properties of concrete.			05
OR					
2	a)	Illustrate how the use of super plasticizer influences the properties of concrete in fresh and hardened state.	CO 1	PO1	10
	b)	Describe the significance of silica fume as a mineral additive in concrete.	CO 1	PO1	10
			UNIT - II		
			CO	PO	Marks
3	a)	List out the tests to measure the workability of concrete and bring out the comparison among them.	CO 1	PO1	08
	b)	Define Curing. Discuss the various methods of curing.	CO 1	PO1	07
	c)	Explain segregation and bleeding of concrete.	CO 1	PO1	05
			UNIT - III		
			CO	PO	Marks
4	a)	Describe the influence of w/c ratio on the properties of concrete	CO 1	PO1	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
 Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Design a concrete mix for M25 grade of concrete using IS 10262 -2019 for the following data</p> <ol style="list-style-type: none"> i. Grade of concrete –M25 ii. Type of cement- OPC, 43 grade iii. Maximum size of the aggregates – 20mm iv. Minimum cement content – 320 kg/m³ v. Maximum W/C ratio – 0.41 vi. Workability – 150mm slump vii. Exposure condition – Severe (RCC) viii. Type of aggregates – Angular aggregates ix. Maximum cement content – 450 kg/m³ x. Specific gravity - Cement -3.15, Coarse aggregate – 2.7, Fine aggregate – 2.6 xi. Chemical admixture – super plasticizer xii. Water absorption – Coarse aggregate -0.5%, Fine aggregate -1% xiii. Fine aggregates –Zone III 	CO 2	PO3,10 ,12	15
UNIT - IV					
5	a)	Explain the factors affecting the hardened properties of concrete.	CO2	PO1	10
	b)	Elaborate the procedure and significance of rebound hammer test.	CO2	PO1	10
OR					
6	a)	Illustrate the mechanism of drying and autogenous shrinkage in concrete.	CO2	PO1	10
	b)	Elaborate the methodology of carrying out the modulus of elasticity test on concrete specimen.	CO2	PO1	10
UNIT - V					
7	a)	Explain the mechanism behind the corrosion of steel in the concrete and the factors causing corrosion.	CO2	PO1	10
	b)	Discuss chloride attack and sulphate attack on concrete and illustrate the remedial measures.	CO2	PO1	10

--	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 22CV4PCENV

Max Marks: 100

Course: Environmental Engineering -1

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I						CO	PO	Marks														
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Describe fire demand? Calculate the fire demand of a city having a population of 250000 using various formulae.						CO1	PO1	05														
		b)	For the following data given below, estimate the future population of a city in the year 2032 by any three suitable methods.						CO1	PO1	08														
			<table border="1" data-bbox="298 1017 1124 1096"> <tr> <td>Year</td><td>1952</td><td>1962</td><td>1972</td><td>1982</td><td>1992</td><td>2002</td></tr> <tr> <td>Population</td><td>72000</td><td>85000</td><td>110000</td><td>144000</td><td>184000</td><td>221000</td></tr> </table> Comment on their relative merits and demerits of each method.						Year	1952	1962	1972	1982	1992	2002	Population	72000	85000	110000	144000	184000	221000			
	Year	1952	1962	1972	1982	1992	2002																		
	Population	72000	85000	110000	144000	184000	221000																		
		c)	Explain the variations in water demand with neat diagram.						CO1	PO1	06														
			UNIT - II																						
		2	a)	Describe an Intake structure. Illustrate with a neat sketch, a twin well river intake structure along with various components.						CO2	PO1,2	08													
			b)	A City has a population of 150000. Water is to be supplied at the rate of 160 lpcd. If the static lift of pump is 40 m, Calculate the BHP of the Motor. The rising main is 300 m long and its diameter is 50 cm. Assume that motor efficiency is 85 %, Pump efficiency is 60 %, $f = 0.01$ and the peak hour demand is 1.5 times the average demand.						CO2	PO1,2	06													
			c)	From a clear water reservoir 2.5 m deep and main water level of 32 m, water is pumped to an elevated reservoir at 80 m at a constant rate of 810000 L/hr. The distance is 1200 m. Take $f = 0.04$. Determine the economic diameter of pipe and total head.						CO2	PO1,2	06													
		OR																							
	3	a)	Give the maximum permissible limits as per the BIS for the following water quality parameters. Also indicate their health significance i) Chlorides ii) Iron iii) MPN iv) Calcium v) Potassium						CO2	PO1,2	10														
		b)	Discuss the Concept of safe, Wholesomeness & palatability of water.						CO2	PO1,2	04														

	c)	Explain various types of water borne diseases and preventive measures to be adopted.	CO2	PO1,2	06
UNIT - III					
4	a)	Summarize the objectives of aeration of water? Enlist various methods and with neat sketch, explain any one of them.	CO2	PO1,2	08
	b)	A Coagulation- sedimentation plant clarifies 40 million liters of water every day. The quantity of filter alum required at the plant is 18mg/l. If the raw water is having an alkalinity equivalent to 5mg/l of CaCO_3 , compute the quantity of filter alum and the quick lime (containing 85% of CaO) required per year by the plant. Take molecular weights as Al=27, S=32, O=16, H=1, Ca=40, C=12.	CO2	PO1,2	08
	c)	Explain the purpose of coagulation and flocculation enumerating common coagulants used.	CO2	PO1,2	04
OR					
5	a)	With help of the neat labelled diagram, explain the working of slow sand filter.	CO2	PO1,2	08
	b)	Explain the basic mechanism involved in the filtration of water.	CO2	PO1,2	04
	c)	With diagram explain the working of Clarifloculator.	CO2	PO1,2	08
UNIT - IV					
6	a)	Explain various methods of disinfection along with merits and demerits	CO3	PO1	06
	b)	Explain Microfiltration and Nano filtration process of water treatment.	CO3	PO1	06
	c)	Define (i) Reverse Osmosis (ii) Pre-chlorination (iii) Post chlorination (iv) Residual Chlorine	CO3	PO1	08
UNIT - V					
7	a)	Illustrate with diagram grid-iron and dead end distribution network systems.	CO3	PO1	08
	b)	Explain any three types of joints in water supply with neat sketch.	CO3	PO1	06
	c)	Explain greywater recycling systems and rain water harvesting method of water conservation Techniques.	CO3	PO1	06

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22CV4PCGTE

Course: Geotechnical Engineering-I

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I				<i>CO</i>	<i>PO</i>	Marks														
1	a)	With a phase diagram define the following: i) Void ratio ii) degree of saturation iii) Air content iv) Percentage air voids				CO1	PO1	6														
	b)	In its natural condition, a soil sample has a mass of 2.298 kg and a volume of $1.18 \times 10^{-3} \text{ m}^3$. After being completely dried in an oven, the mass of the sample is 2.032 kg. The value of G_s for the soil is 2.7. Determine the bulk density, bulk unit weight, water content, void ratio, porosity, degree of saturation and air content.				CO1	PO1	8														
	c)	List the different types of transported soils and the agency which transports them. Explain the characteristic feature of glacial deposits.				CO1	PO1	6														
		UNIT - II																				
2	a)	Table 1 presents the data obtained from a percussion cup apparatus done to determine liquid limit of a soil having a natural water content of 38.0%. The plastic limit of the soil was ascertained independently and was found to be 28.4 %.																				
		Table 1: Percussion cup test data (Q. 2a)																				
		<table border="1"> <thead> <tr> <th>Number of drops</th> <th>14</th> <th>18</th> <th>23</th> <th>28</th> <th>33</th> <th>40</th> </tr> </thead> <tbody> <tr> <td>Water content (%)</td> <td>45.5</td> <td>43.9</td> <td>42.5</td> <td>41.4</td> <td>40.4</td> <td>39.0</td> </tr> </tbody> </table>							Number of drops	14	18	23	28	33	40	Water content (%)	45.5	43.9	42.5	41.4	40.4	39.0
Number of drops	14	18	23	28	33	40																
Water content (%)	45.5	43.9	42.5	41.4	40.4	39.0																
		Using the data given in Table 1, determine the following: i) Liquidity index ii) Flow index																				
	b)	In a sandy deposit above the water table, it was found to have a natural water content of 13.5 % and a unit weight of 18.7 kN/m ³ . Laboratory test on a dried sample indicated minimum void ratio, $e_{min} = 0.48$ and maximum void ratio, $e_{max} = 0.83$ for																				

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<p>the densest and loosest states respectively. Compute the suitable parameter that indicates the state of compactness of the soil in the field. Assume $G_s = 2.67$. Also find the degree of saturation of the soil.</p> <p>If driven piles have to be adopted in this soil, suggest whether it is advisable to go with driven piles. If yes why? If not give reasons why it is not suitable to adopt driven pile system in that soil.</p>																								
	c)	<p>A soil has the following physical properties obtained from a routine laboratory test. Classify the soil as per Indian Standard Soil Classification System</p> <p>Table 2: Physical properties of soil (Q. 2c)</p> <table border="1"> <thead> <tr> <th>Liquid limit (%)</th> <th>Plasticity Index (%)</th> <th>Gravel (%)</th> <th>Silt (size) (%)</th> <th>Clay (size) (%)</th> </tr> </thead> <tbody> <tr> <td>32.0</td> <td>8.6</td> <td>5</td> <td>10</td> <td>1</td> </tr> </tbody> </table>	Liquid limit (%)	Plasticity Index (%)	Gravel (%)	Silt (size) (%)	Clay (size) (%)	32.0	8.6	5	10	1		6												
Liquid limit (%)	Plasticity Index (%)	Gravel (%)	Silt (size) (%)	Clay (size) (%)																						
32.0	8.6	5	10	1																						
		OR																								
3	a)	<p>50 g of oven dried soil sample is taken for sedimentation analysis the hydrometer reading in 1000 ml suspension of soil 30 minutes after commencement of sedimentation test is 24.0. The effective depth for $R_h = 24.5$, found from the calibration curve is 10.5 cm. Meniscus correction is found to be + 0.5 and the composite correction is -2.5 at the test temperature of 30° C. Taking the specific gravity of particles as 2.70 and viscosity of water as 0.008 poise, calculate smallest particle size which would have settled during this interval of 30 minutes and percentage of particles finer than the size.</p>		6																						
	b)	<p>Grain size distribution was done on a soil sample and the test results are as given in Table 3. The soil has a liquid limit of 72.5% and plastic limit of 35%. Plot the Grain Size Distribution plot and give the proportion of various fractions in the soil. Also classify the soil as per Indian Soil Classification System giving all the steps used at arriving the Group symbol of the soil.</p> <p>Table 3 Grain size distribution data of soil sample (Q. 3b)</p> <table border="1"> <thead> <tr> <th>I.S sieve size (mm)</th> <th>Percent Finer</th> </tr> </thead> <tbody> <tr> <td>4.75</td> <td>97</td> </tr> <tr> <td>2.36</td> <td>92</td> </tr> <tr> <td>1.18</td> <td>88</td> </tr> <tr> <td>0.6</td> <td>83</td> </tr> <tr> <td>0.425</td> <td>76</td> </tr> <tr> <td>0.300</td> <td>72</td> </tr> <tr> <td>0.212</td> <td>70</td> </tr> <tr> <td>0.150</td> <td>68</td> </tr> <tr> <td>0.075</td> <td>65</td> </tr> <tr> <td>0.058</td> <td>58</td> </tr> </tbody> </table>	I.S sieve size (mm)	Percent Finer	4.75	97	2.36	92	1.18	88	0.6	83	0.425	76	0.300	72	0.212	70	0.150	68	0.075	65	0.058	58		14
I.S sieve size (mm)	Percent Finer																									
4.75	97																									
2.36	92																									
1.18	88																									
0.6	83																									
0.425	76																									
0.300	72																									
0.212	70																									
0.150	68																									
0.075	65																									
0.058	58																									

			0.030	50				
			0.010	44				
			0.009	40				
			0.0065	38				
			0.005	37				
			0.002	33				
			0.0015	32				
			UNIT - III					
4	a)	What are the three most common clay minerals of engineering significance? With a neat sketch describe one clay mineral which if present in the red tropical soils. Also give reason for the soil to have the least swelling due to the presence of that mineral and give the common values of specific surface area, cation Exchange capacity of the clay mineral.	CO1	PO1	8			
	b)	A water table in a certain area is at a depth of 4 m below the ground surface. To a depth of 12 m the soil consists of very fine sand having an average void ratio of 0.7. Above the water table the sand has an average degree of saturation of 50%. Calculate the effective pressure on horizontal plane at a depth of 10 m below the ground surface. What will be the increase in effective pressure if the soil gets saturated by capillarity up to a height of 1 m above the water table?. Assume $G_s = 2.65$.	CO2	PO2	6			
	c)	What is capillarity in soils? Derive an expression for the height of capillary rise in soils. In which kind of soils, it can be observed in field situations?	CO2	PO2	6			
		UNIT - IV						
5	a)	During a falling head permeability test the sample on a close investigation was found to be in two layers 70 and 30 mm thick. The routine falling head permeameter test on this sample yielded the following results: Diameter of standpipe = 4 mm Sample diameter = 80 mm Length of the sample = 100 mm Initial head = 1200 mm Final head = 440 mm Time for fall in head = 6.5 min Determine the average permeability coefficient using the laboratory test data. After the test, independent tests were made on each soil layer, and the values of coefficient of hydraulic conductivity were found to be 6.14×10^{-4} mm/s and 1.78×10^{-2} mm/s. Check the average coefficient of hydraulic conductivity through the sample in the laboratory test with the estimated value considering layer effect. Also estimate the average coefficient of hydraulic conductivity in a direction at right angles to sampling. Comment on the result.	CO2	PO2	10			
	b)	List and explain with neat sketches the factors that affect the compaction characteristics of soils.	CO2	PO2	10			

* * * * *

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22CV4PCHYE

Course: Hydraulic Engineering

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
1	a)	Differentiate between an open channel flow and a pipe flow.	CO1	PO1	6
	b)	Derive the expression for the most economical rectangular channel section with usual notations.	CO1	PO1	6
	c)	Design an earthen trapezoidal channel for water having a velocity of 0.6 m/s. Side slope of the channel is 1 horizontal to 1.5 vertical and quantity of water flowing is 3 m ³ /s. Assume C in Chezy's formula as 65.	CO1	PO2	8
		UNIT - II			
2	a)	Differentiate between total energy and specific energy of a fluid flow. Also, illustrate the typical specific energy curve.	CO1	PO1	6
	b)	Explain the momentum equation, and the momentum correction factor used in fluid dynamics.	CO1	PO1	6
	c)	Discharge of water through a rectangular channel of width 8 m is 15 m ³ /s when the depth of flow is 1.2 m. Calculate (i) specific energy of the flowing water (ii) critical depth and critical velocity (iii) value of minimum specific energy for the flow.	CO1	PO1	8
		UNIT - III			
3	a)	Define non-uniform flow in an open channel and explain the types of non-uniform flows. List the assumptions used in the analysis of non-uniform flows.	CO1	PO1	6
	b)	Derive the expression for gradually varied flow in an open channel in terms of the bed slope and the slope of the energy line.	CO1	PO1	6
	c)	Illustrate the non-uniform flow surface profiles in a steep slope channel.	CO1	PO1	8
		OR			
4	a)	Explain different types of hydraulic jumps in a horizontal rectangular channel depending upon the value of Froude number of the incoming flow.	CO1	PO1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	A horizontal rectangular channel 4 m wide carries a discharge of 16 m ³ /s. Determine whether a jump occur at an initial depth of 0.5 m or not. If a jump occurs, determine the sequent depth to this initial depth.	CO1	PO2	6
	c)	Show that the head loss in a hydraulic jump formed in a horizontal rectangular channel may be expressed as $\Delta E = \frac{(V_1 - V_2)^3}{2g(V_1 + V_2)}$	CO1	PO1	8
UNIT - IV					
5	a)	Explain computational fluid dynamics with its advantages.	CO2	PO1	6
	b)	Discuss Dirichlet and Neumann boundary conditions in the context of fluid mechanics.	CO2	PO1	6
	c)	Discuss Navier-Stokes equation and the computational steps required to arrive at its approximate solutions.	CO2	PO1	8
UNIT - V					
6	a)	Explain dimensional analysis and list the advantage of dimensional analysis.	CO3	PO1	6
	b)	Explain the Rayleigh's method of dimensional analysis with usual notations.	CO3	PO1	6
	c)	Derive an expression for the drag force \mathbf{F} on smooth sphere of diameter \mathbf{D} moving a uniform velocity \mathbf{V} in fluid density ρ and dynamic viscosity μ using the dimensional analysis.	CO3	PO1	8

B.M.S. College of Engineering, Bengaluru-560019

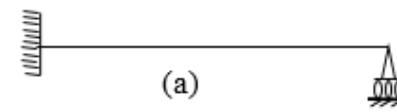
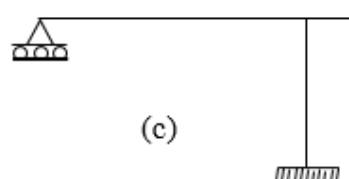
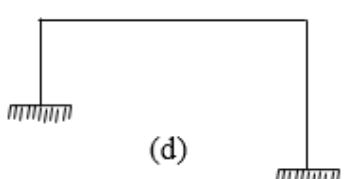
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

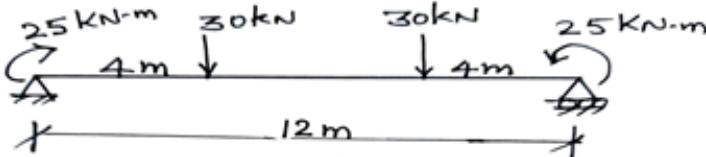
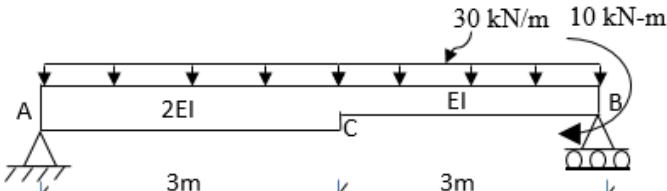
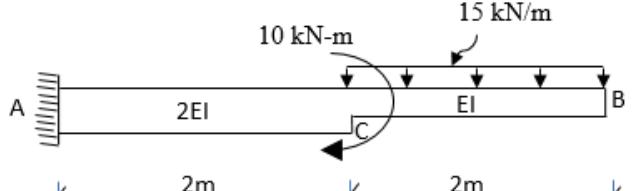
Programme: B.E.

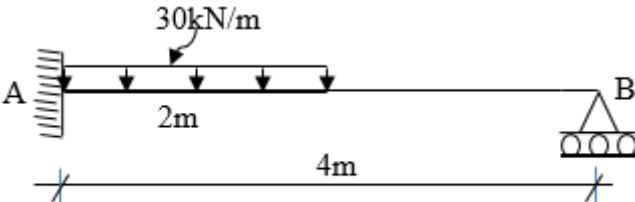
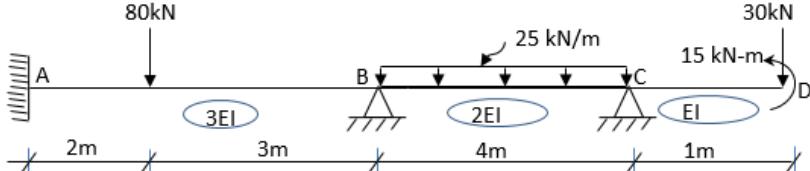
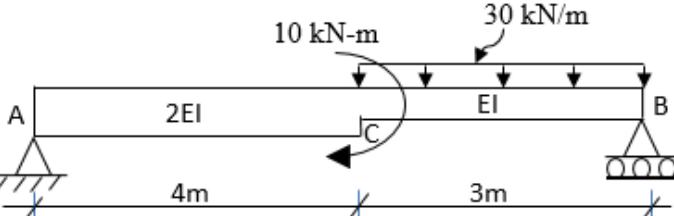
Branch: Civil Engineering

Course Code: 22CV4PCSTA




Course: Structural Analysis

Semester: IV




Duration: 3 hrs.




Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Determine the static and kinematic indeterminacies for the structures shown in Fig. 1.	CO1	PO1	08
Fig. 1					
	b)	A cantilever beam of span 'L' is subjected to an uniformly varying load which varies linearly from zero at the free end to a value of $w/\text{unit length}$ at the fixed end. Derive equation for slope and deflection at the free end using double integration method.	CO1	PO1, 2	12
UNIT - II					
2	a)	A cantilever beam of span 3m is loaded by an UDL of intensity 6 KN/m over a distance of 2m from free end. Also a concentrated load of 15KN acts at 2m from free end. Find slope and deflection at free end using moment area method.	CO1	PO1, 2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>A simply supported beam of span 12m is loaded by two concentrated loads of magnitude 30KN each at 4m from either supports. In addition, it is subjected to end couples of equal magnitude of 25 KN-m as shown in Fig.2. Find slope at the support and deflection at the mid span using conjugate beam method.</p> <p>Fig-2</p>	CO1	PO1, 2	10
		OR			
3	a)	<p>Find the slope and deflection at point 'C' for the beam shown in Fig.3 using conjugate beam method. Take $E=200$ GPa, $I=1.2 \times 10^8$ mm⁴</p> <p>Fig. 3</p>	CO1	PO1, 2	10
	b)	<p>Find the maximum deflection and maximum slope for the cantilever beam shown in Fig.4 using moment area method. Take $E=200$ GPa, $I=1.2 \times 10^8$ mm⁴</p> <p>Fig. 4</p>	CO1	PO1, 2	10
		UNIT - III			
4	a)	<p>A suspension cable of span 30m and central dip 4.5m carries an uniformly distributed load of intensity 12KN/m over the entire span. Find maximum and minimum tension in the cable, length and size of cable if permissible stress is 600MPa. Also find forces acting on the supporting tower if the cable passes over smooth pulleys on top of the towers. The anchorage cable is inclined at an angle of 60° with the axis of tower.</p>	CO1	PO1,2	12

	b)	A three hinged parabolic arch of span 'L' and rise 'h' carries a uniformly distributed load of 'w' per unit run over the whole span. Show that the arch is not subjected to bending moment at any section.	CO1	PO1,2	08
		UNIT - IV			
5	a)	Find the reaction at A and B for the propped cantilever beam shown in Fig.5 by consistent deformation method.	CO1	PO1,2	06
		<p style="text-align: center;">Fig.5</p>			
	b)	Using the theorem of three moments analyze the continuous beam shown in Fig. 6. Take $E=200 \text{ KN/mm}^2$, $I=1.8 \times 10^8 \text{ mm}^4$. Draw BMD and elastic curve. Assume support B sinks by 5mm	CO1	PO1,2	14
		<p style="text-align: center;">Fig. 6</p>			
		UNIT - V			
6	a)	A simply supported beam is loaded as shown in Fig. 7. Determine deflection at 'C' using Castigliano's theorem. Take $EI= 12000 \text{ KN-m}^2$.	CO2	PO1,2	10
		<p style="text-align: center;">Fig. 7</p>			
	b)	Determine the vertical deflection at the point C in the pin jointed truss shown in Fig. 8 using unit load method. The cross-sectional area of all members is 1000 mm^2 . Take $E = 200 \text{ kN/mm}^2$.	CO2	PO1,2	10

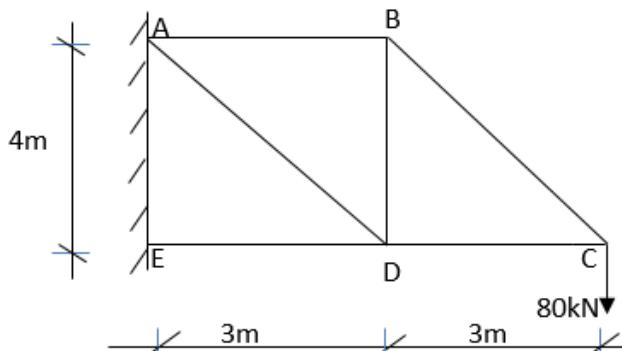


Fig. 8

OR

7 a) Derive an equation for strain energy stored in a member due to bending.

CO2 PO1 **04**

b) Explain strain Energy and complimentary strain energy with the examples.

CO2 PO1 **04**

c) Determine the horizontal and vertical displacement at the point C of the rigid frame shown in Fig. 9 using Castiglano's theorem method. Take $EI = 12000 \text{ KN-m}^2$.

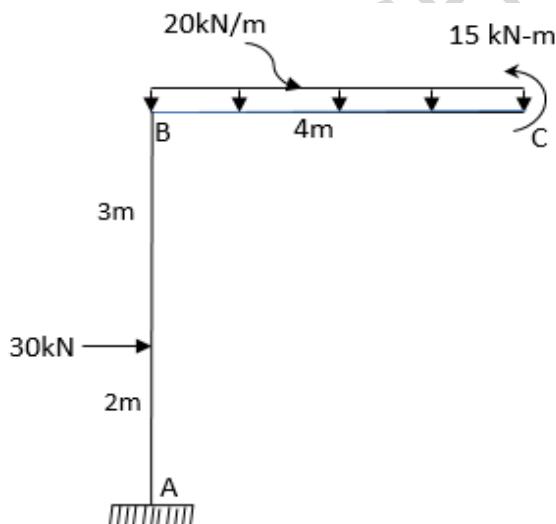


Fig. 9

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Semester: III / IV

Branch: Common to all Branches

Duration: 01hr 30min.

Course Code: 22CV3HSEVS / 22CV4HSEVS

Max Marks: 50

Course: Environmental Studies

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

	8	Ozone layer is found in a) Thermosphere c) Troposphere b) Stratosphere d) Mesosphere	CO1	PO1	1
	9	A human body consists of _____ number of bones a) 205 c) 200 b) 210 d) 206	CO2	PO1	1
	10	A herbivore is also known as a a) Producer c) Second order consumer b) First order consumer d) Third order consumer	CO3	PO1	1
	11	The second trophic level in a lake is a) Phytoplankton c) Fishes b) Zooplanktons d) Benthos	CO1	PO1	1
	12	A poisonous gas given out of a vehicle exhaust is a) Methane c) Carbon di oxide b) Ethane d) Carbon Monoxide	CO2	PO1	1
	13	A pH of rainwater is a) 5-6 c) 7-8 b) 6 – 7 d) 8 - 9	CO1	PO1	1
	14	Yellowing of Taj Mahal is an effect of a) Acid Rain c) Ozone depletion b) Global Warming d) All the above	CO2	PO1	1
	15	Possible health effects of noise pollution include a) Hearing loss c) Cardiovascular effects b) Hypertension d) All the above	CO3	PO1	1
	16	How much percentage of nitrogen is in Earth's Atmosphere? a) 25%. c) 92%. b) 12%. d) 78%.	CO3	PO1	1
	17	With respect to environment science, full form of SPM is a) Suspended Partial Matter. b) Suspended Particulate Matter. c) Suspended Pollutant Matter d) None of these.	CO1	PO1	1
	18	In an ecosystem, bacteria are the a) Producers. c) Secondary consumers. b) Primary consumers d) Decomposers	CO2	PO1	1
	19	Syringes are examples of a) Industrial wastes. b) Biomedical wastes. c) Domestic wastes. d) Radioactive wastes.	CO2	PO1	1
	20	World environment day is celebrated every year on a) Aug 12 c) September 8 b) June 5 d) July 10	CO3	PO1	1
		PART B (Answer any THREE full questions)			
	1 a	Explain various parts of Lithosphere	CO1	PO1	6
	b	Define Ecology and Ecosystem	CO1	PO1	4

	2	a	Briefly explain Environmental Impact Assessment (EIA) and Sustainable Development	CO2	PO2	5
		b	Explain the Effects of Human activities on Agriculture and Industries	CO2	PO2	5
	3	a	Explain the causes & consequences of deforestation	CO3	PO1	5
		b	Distinguish between Conventional and Non-conventional energy resources	CO3	PO1	5
	4	a	Discuss the effects & control of noise pollution.	CO3	PO1	5
		b	Discuss the effects & control of Air pollution.	CO3	PO1	5

B.M.S.C.E. - ODD SEM 2023/2024