

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22CV4PCGTE

Course: Geotechnical Engineering -I

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	<p>A specimen of clay was tested in the laboratory and the following data were collected</p> <p>Mass of wet specimen $M_1=148.8\text{g}$</p> <p>Mass of dry specimen $M_2=106.2\text{g}$</p> <p>Volume of wet specimen $V=86.2\text{cc}$</p> <p>Specific gravity of particles $G=2.70$</p> <p>Determine</p> <p>a) Water content</p> <p>b) Bulk and dry densities</p> <p>c) Void ratio and porosity</p> <p>d) Degree of saturation</p>	<i>CO 1</i>	<i>PO2</i>	7
		b)	<p>An irregular sample of a firm clay was cut from a trial hole and sent to a laboratory for testing. In order to determine its bulk density the samples was coated with paraffin wax and its volume found by displacement. The following data were collected:</p> <p>Mass of soil as received = 924.2g</p> <p>Mass of soil after coating with paraffin wax = 946.6g</p> <p>Volume of water displaced = 513.1ml</p> <p>Specific gravity of wax = 0.9</p> <p>Determine the bulk density of the soil.</p>	<i>CO 1</i>	<i>PO2</i>	7
		c)	<p>With help of a phase diagram, define the terms bulk density, dry density and saturated density</p>	<i>CO1</i>	<i>PO1</i>	6
			UNIT - II			
	2	a)	<p>After a series of laboratory tests, the following data were established for a fine soil:</p> <p>$WL=45\%$, $WP=18\%$</p> <p>Clay content = 24.2%</p> <p>a) Describe the soil according to IS classification system</p> <p>b) Calculate the activity of the soil</p> <p>c) Determine the liquidity index of the soil when its natural moisture content is 29%</p>	<i>CO 1</i>	<i>PO2</i>	10
		b)	<p>List and discuss the tests involved in field identification of soils</p>	<i>CO 1</i>	<i>PO1</i>	10
			OR			

3	a)	<p>A sand replacement test was carried out to determine the in-situ bulk density of a soil. From the following recorded data, determine the value of density required.</p> <p>Mass of soil removed from hole = 2764g</p> <p>Initial total mass of sand pouring cylinder = 5724g</p> <p>Final total mass of sand pouring cylinder = 3172g</p> <p>Volume of cone in sand pouring cylinder = 248 cc</p> <p>Density of pouring sand = 1560 kg/m³</p>	CO 1	PO2	8												
	b)	<p>In a liquid limit test on a fine grained soil, using a cone penetrometer, the following results were recorded</p> <table border="1"> <tr> <td>Cone penetration (mm)</td><td>15.9</td><td>17.7</td><td>19.1</td><td>20.3</td><td>21.5</td></tr> <tr> <td>Water content (%)</td><td>32.6</td><td>42.9</td><td>51.6</td><td>59.8</td><td>66.2</td></tr> </table> <p>In a plastic limit test on the same soil, the plastic limit was found to be 25%. Determine the liquid limit and plasticity index of the soil and classify it according to IS Classification system</p>	Cone penetration (mm)	15.9	17.7	19.1	20.3	21.5	Water content (%)	32.6	42.9	51.6	59.8	66.2	CO 1	PO2	12
Cone penetration (mm)	15.9	17.7	19.1	20.3	21.5												
Water content (%)	32.6	42.9	51.6	59.8	66.2												
		UNIT - III															
4	a)	<p>A sediment settling lagoon has a depth of water of 4m above the clay base. The clay layer is 3m thick and this overlies 4m of a medium sand, which in turn overlies impermeable rock. Calculate the effective stresses at the top of the clay and at the top and bottom of the second layer under the following conditions: (a) Initially, before any sediment is deposited (b) after a 2m layer of sediment of silty fine sand has been deposited and (c) after draining the lagoon down to base level, with the same thickness (2m) of sediment still in place. Unit weights of clay=18kN/m³; sand=20kN/m³; sediment = 16kN/m³.</p>	CO 2	PO2	14												
	b)	Discuss any two types of soil structure.	CO 2	PO1	06												
		UNIT - IV															
5	a)	<p>A stratified soil consists approximately of alternating layers of sand and silt. The sand layers are generally 150mm in thickness and have a permeability of $k=6.5 \times 10^{-1}$ mm/s, the silt layers are 1.80m thick and have a $k=2.5 \times 10^{-4}$ mm/s. Assuming that within each layer flow condition is isotropic, determine the ratio of the horizontal permeability to that of the vertical.</p>	CO 2	PO2	10												
	b)	List and discuss the factors affecting permeability of soil.	CO 2	PO1	10												
		OR															
6	a)	<p>The observations of a standard proctor test are given below</p> <table border="1"> <tr> <td>Water content (%)</td><td>12.85</td><td>14.28</td><td>15.65</td><td>16.86</td><td>17.89</td></tr> <tr> <td>Bulk density (g/cc)</td><td>2.06</td><td>2.10</td><td>2.15</td><td>2.16</td><td>2.14</td></tr> </table> <p>Plot the compaction curve and determine the OMC and MDD Also plot the Zero Air Void line. Take G =2.72</p>	Water content (%)	12.85	14.28	15.65	16.86	17.89	Bulk density (g/cc)	2.06	2.10	2.15	2.16	2.14	CO 2	PO2	10
Water content (%)	12.85	14.28	15.65	16.86	17.89												
Bulk density (g/cc)	2.06	2.10	2.15	2.16	2.14												
	b)	List and discuss the factors affecting compaction.	CO 2	PO1	10												

		UNIT - V																							
7	a)	<p>During a shear box test on specimen of a compacted sand the following results were recorded:</p> <table border="1"> <tr><td>Normal Load (N)</td><td>110</td><td>216</td><td>324</td><td>432</td></tr> <tr><td>Ultimate shear load (N)</td><td>66</td><td>131</td><td>195</td><td>261</td></tr> <tr><td>Peak shear load (N)</td><td>85</td><td>170</td><td>253</td><td>340</td></tr> </table> <p>Determine the peak and ultimate angles of friction.</p>	Normal Load (N)	110	216	324	432	Ultimate shear load (N)	66	131	195	261	Peak shear load (N)	85	170	253	340			CO 2	PO2	10			
Normal Load (N)	110	216	324	432																					
Ultimate shear load (N)	66	131	195	261																					
Peak shear load (N)	85	170	253	340																					
	b)	<p>A drained triaxial compression test carried out on three specimens of the same soil yielded the following results:</p> <table border="1"> <tr><td>Test No.</td><td>1</td><td>2</td><td>3</td></tr> <tr><td>Cell pressure (kPa)</td><td>100</td><td>200</td><td>300</td></tr> <tr><td>Ultimate deviator stress (kN/m²)</td><td>210</td><td>438</td><td>644</td></tr> </table> <p>Draw the shear strength envelope and determine the shear strength parameters, assuming that the pore pressure remains constant during the axial loading stage.</p>	Test No.	1	2	3	Cell pressure (kPa)	100	200	300	Ultimate deviator stress (kN/m ²)	210	438	644			CO 2	PO2	10						
Test No.	1	2	3																						
Cell pressure (kPa)	100	200	300																						
Ultimate deviator stress (kN/m ²)	210	438	644																						
