

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22CV4PCGTE

Course: Geotechnical Engineering-I

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

	b)	Determine the uniformity co-efficient and co-efficient of curvature of the soil, by plotting the grain size distribution curve for the following data.	CO1	PO2	08																		
		<table border="1"> <tr> <td>Sieve size (mm)</td><td>4.75</td><td>2.36</td><td>1.18</td><td>0.600</td><td>0.425</td><td>0.300</td><td>0.150</td><td>0.075</td></tr> <tr> <td>Mass of soil retained (g)</td><td>167</td><td>140</td><td>160</td><td>142</td><td>118</td><td>83</td><td>72</td><td>51</td></tr> </table>	Sieve size (mm)	4.75	2.36	1.18	0.600	0.425	0.300	0.150	0.075	Mass of soil retained (g)	167	140	160	142	118	83	72	51			
Sieve size (mm)	4.75	2.36	1.18	0.600	0.425	0.300	0.150	0.075															
Mass of soil retained (g)	167	140	160	142	118	83	72	51															
	c)	The dry unit weight of a sand sample in the loosest state is 13.34 kN/m ³ and in the densest state, it is 21.19 kN/m ³ . Determine the density index of this sand when it has a porosity of 33%. Assume the grain specific gravity as 2.68.	CO1	PO2	08																		
		UNIT - III																					
4	a)	List and discuss the types of soil structure.	CO2	PO1	06																		
	b)	A sediment settling lagoon has a depth of water of 4m above the clay base. The clay layer is 3m thick and this overlies 4m of a medium sand, which in turn overlies impermeable rock. Calculate the effective stresses at the top of the clay and at the top and bottom of the second layer under the following conditions: (a) Initially, before any sediment is deposited (b) after a 2m layer of sediment of silty fine sand has been deposited and (c) after draining the lagoon down to base level, with the same thickness (2m) of sediment still in place. Unit weights of clay=18kN/m ³ ; sand=20kN/m ³ ; sediment = 16kN/m ³ .	CO2	PO2	14																		
		UNIT - IV																					
5	a)	Discuss the factors affecting compaction of soil.	CO2	PO1	10																		
	b)	A stratified soil consists approximately of alternating layers of sand and silt. The sand layers are generally 150mm in thickness and have a permeability of $k=6.5 \times 10^{-1}$ mm/s, the silt layers are 1.80m thick and have a $k=2.5 \times 10^{-4}$ mm/s. Assuming that within each layer flow condition is isotropic, determine the ratio of the horizontal permeability to that of the vertical.	CO2	PO2	10																		
		OR																					
6	a)	List the factors affecting permeability of soil.	CO2	PO1	04																		
	b)	Explain with neat sketch Proctor needle method for field compaction control.	CO2	PO1	08																		
	c)	The observations of a standard proctor test are given below: <table border="1"> <tr> <td>Water content (%)</td><td>10</td><td>12</td><td>14.3</td><td>16.1</td><td>18.2</td></tr> <tr> <td>Mass of wet soil (g)</td><td>1925</td><td>2095</td><td>2150</td><td>2125</td><td>2070</td></tr> </table> Volume of the mould used was 945 ml Plot the compaction curve Determine OMC and MDD. Also plot the ZAV considering G=2.7	Water content (%)	10	12	14.3	16.1	18.2	Mass of wet soil (g)	1925	2095	2150	2125	2070	CO2	PO2	08						
Water content (%)	10	12	14.3	16.1	18.2																		
Mass of wet soil (g)	1925	2095	2150	2125	2070																		

UNIT - V																	
7	a)	Explain the advantages and disadvantages of 1. Triaxial test 2. Direct Shear test		CO2	PO1												
	b)	A drained triaxial compression test carried out on three specimens of the same soil yielded the following results: <table border="1"> <thead> <tr> <th>Test No.</th> <th>1</th> <th>2</th> <th>3</th> </tr> </thead> <tbody> <tr> <td>Cell pressure (kPa)</td> <td>100</td> <td>200</td> <td>300</td> </tr> <tr> <td>Ultimate deviator stress (kN/m²)</td> <td>210</td> <td>438</td> <td>644</td> </tr> </tbody> </table> Draw the shear strength envelope and determine the shear strength parameters, assuming that the pore pressure remains constant during the axial loading stage.	Test No.	1	2	3	Cell pressure (kPa)	100	200	300	Ultimate deviator stress (kN/m ²)	210	438	644		CO2	PO2
Test No.	1	2	3														
Cell pressure (kPa)	100	200	300														
Ultimate deviator stress (kN/m ²)	210	438	644														

SUPPLEMENTARY EXAMS 2024