

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22CV4PCGTE

Course: Geotechnical Engineering - I

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - III																				
3	a)	Discuss the types of Soil structure.																		
	b)	Explain with neat sketch, Kaolinite clay mineral.																		
	c)	Compute the total, effective and pore pressure at a depth of 15 m below the bottom of a lake 6 m deep. The bottom of the lake consists of soft clay with a thickness of more than 15 m. The average water content of the clay is 40% and the specific gravity of soils may be assumed to be 2.65.																		
UNIT - IV																				
4	a)	Discuss the factors affecting Permeability of soil.																		
	b)	Determine the ratio of average permeability in horizontal direction to that in the vertical direction for a soil deposit consisting of three horizontal layers. If the thickness and permeability of the second layer are twice of those of first layer, and the thickness and permeability of the third layer are twice of those of second layer.																		
	c)	The observations of a standard proctor test are given below: <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 25%;">Water content (%)</td><td style="width: 12.5%;">7.70</td><td style="width: 12.5%;">11.50</td><td style="width: 12.5%;">14.60</td><td style="width: 12.5%;">17.50</td><td style="width: 12.5%;">19.70</td><td style="width: 12.5%;">21.20</td></tr> <tr> <td>Mass of compacted soil (g)</td><td>1700</td><td>1890</td><td>2030</td><td>1990</td><td>1960</td><td>1920</td></tr> </table> Volume of the mould used was 945 cm^3 . Make necessary calculations and plot the compaction curve and also determine OMC and MDD.					Water content (%)	7.70	11.50	14.60	17.50	19.70	21.20	Mass of compacted soil (g)	1700	1890	2030	1990	1960	1920
Water content (%)	7.70	11.50	14.60	17.50	19.70	21.20														
Mass of compacted soil (g)	1700	1890	2030	1990	1960	1920														
OR																				
5	a)	Differentiate between standard proctor test and modified proctor test.																		
	b)	List and discuss the factors affecting compaction.																		
	c)	From an undisturbed chunk soil sample obtained from the field, a portion of the undisturbed sample was extracted to fit into in a standard permeameter apparatus such that the stratification of the soil in the field was retained in the laboratory. The soil sample was 150 mm long and 3848.45 mm^2 in cross-section. A constant head of 220 mm was maintained such that the flow was perpendicular to the stratification. The discharge yielded was. $250 \times 10^2 \text{ mm}^3$ in a time of 2.5 mins. Compute the coefficient of hydraulic conductivity, coefficient of percolation, the seepage velocity and discharge velocity, given that the void ratio of the soil sample is 0.58. Based on the results obtained comment on the type of soil.																		
UNIT - V																				
6	a)	Explain Mohr-Coulomb theory as applied to soils.																		
	b)	Discuss the advantages of triaxial compression test over direct shear test.																		

	c)	Calculate the potential shear strength on a horizontal plane at a depth of 3 m below the surface in a formation of cohesionless soil when the water table is at a depth of 3.5m. The degree of saturation may be taken as 0.5 on the average; Void ratio = 0.50; grain specific gravity = 2.70; angle of internal friction = 30° . What will be the modified value of shear strength if the water table reaches the ground surface?	CO3	PO4	08
		OR			
7	a)	Discuss the types of shear tests based on drainage conditions.	CO2	PO2	06
	b)	Two samples of soil were tested in a triaxial machine. The all-round pressure maintained for the first sample was 200 kN/m^2 and failure occurred at additional axial stress of 770 kN/m^2 , while for the second sample, these values were 500 kN/m^2 and 1370 kN/m^2 respectively. Determine the cohesion and angle of internal friction.	CO3	PO4	06
	c)	<p>In a direct shear test on a specimen of clean dry sand, a normal stress of 145 kN/m^2 was applied and failure occurred at a shear stress of 60 kN/m^2.</p> <p>Determine graphically:</p> <p>(i) the angle of shearing resistance, (ii) the principal stresses during failure, and (iii) the directions of the principal planes with respect to the direction of the plane of shearing.</p>	CO3	PO4	08
