

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 23CV4PCGTE / 22CV4PCGTE

Max Marks: 100

Course: Geotechnical Engineering-I

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define the terms: Degree of saturation, percentage air voids and unit weight of solids, with the help of three phase diagram.	<i>CO1</i>	<i>PO1</i>	06
	b)	Distinguish between <ul style="list-style-type: none"> i. Water content and air content ii. Void ratio and percentage air voids iii. Bulk density and bulk unit weight iv. Saturated unit weight and submerged unit weight v. Specific gravity of soil particles and specific gravity of soil mass vi. Air content and degree of saturation 	<i>CO1</i>	<i>PO1</i>	06
	c)	If an earthen embankment under construction the bulk unit weight is 16.5kN/m^3 at water content of 11%. If the water content is to be raised to 15%, compute the quantity of water required to be added per cubic meter of soil? Assume no change in the void ratio.	<i>CO1</i>	<i>PO2</i>	08
OR					
2	a)	Show the phase diagram for dry soil, saturated soil and partially saturated soil with their corresponding unit weights along with their degrees of saturation.	<i>CO1</i>	<i>PO1</i>	06
	b)	Define the following with the help of a phase diagram <ul style="list-style-type: none"> i. Void ratio ii. Air content iii. Porosity 	<i>CO1</i>	<i>PO1</i>	06
	c)	A sample of clay with a weight of 6.7N was coated with paraffin wax. The combined weight of clay and wax was found to be 6.78N. The volume of the wax coated sample was found, by immersion in water,	<i>CO1</i>	<i>PO2</i>	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<p>to be $350 \times 10^3 \text{ mm}^3$. The sample was then broken open and moisture content was found to be 17%. If the specific gravities of soil particles and wax are 2.67 and 0.89, determine the bulk unit weight, void ratio and degree of saturation of the soil sample.</p>													
		UNIT - II													
3	a)	Explain how soils are classified according to IS soil classification system with the help of Plasticity Chart.	CO1	PO1	06										
	b)	<p>The following results refer to a liquid limit test:</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Number of blows</td> <td>33</td> <td>23</td> <td>18</td> <td>11</td> </tr> <tr> <td>Water content (%)</td> <td>45.5</td> <td>49.5</td> <td>51.5</td> <td>55.6</td> </tr> </table> <p>The plastic limit is 23.5%. Determine the plasticity index and toughness index for the soil.</p>	Number of blows	33	23	18	11	Water content (%)	45.5	49.5	51.5	55.6	CO1	PO2	06
Number of blows	33	23	18	11											
Water content (%)	45.5	49.5	51.5	55.6											
	c)	The mass and volume of a saturates clay specimen were 29.8g and 17.7cm^3 respectively. On oven drying the mass got reduced to 19g and volume to 8.9cm^3 , Calculate the shrinkage limit, shrinkage ratio and volumetric shrinkage. Also compute G of the soil.	CO1	PO2	08										
		OR													
4	a)	Discuss the corrections applied to hydrometer readings	CO1	PO1	06										
	b)	An oven dried soil sample having mass of 195g was put inside a pycnometer which was then completely filled with distilled water. The mass of pycnometer with soil and water was found to be 1584g. the mass of pycnometer filled with water alone was 1465g. Calculate the specific gravity of soil solids.	CO1	PO2	06										
	c)	50g of oven dried soil passing 75μ test sieve was taken in a hydrometer analysis. The corrected hydrometer reading in 1000ml soil suspension at 2 minutes elapsed time interval was 25. The effective depth corresponding to $Rh=25$ is $He=12.1\text{cm}$. Taking $G=2.7$ and $\eta=0.01 \times 10^{-4} \text{ kN}\cdot\text{s}/\text{m}^2$, calculate the coordinates of the point on the grain size distribution curve.	CO1	PO2	08										
		UNIT - III													
5	a)	Distinguish between dispersed and flocculent structure	CO2	PO1	06										
	b)	Explain with neat sketches Kaolinite and Montmorillonite clay minerals	CO2	PO1	06										
	c)	A sand stratum is 10m thick. The water table is 2m below ground level. The unit weights of sand layer above and below water table are $17\text{kN}/\text{m}^3$ and $21\text{kN}/\text{m}^3$ respectively. The capillary rise above water table is 1m. Draw the effective stress, pore pressure and total stress diagrams for the sand stratum.	CO2	PO2	08										

OR																										
6	a)	Discuss the types of soil structure	<i>CO2</i>	<i>PO1</i>	06																					
	b)	Explain with sketches montmorillonite and Illite clay mineral	<i>CO2</i>	<i>PO1</i>	06																					
	c)	In a site reclamation project, 2.5m of graded fill ($\gamma=22\text{kN/m}^3$) were laid in compacted layers over an existing layer of silty clay ($\gamma=18\text{kN/m}^3$) which was 3m thick. This was underlain by a 2m thick layer of gravel ($\gamma=20\text{kN/m}^3$). Assuming that the water table remains at the surface of the silty clay, draw the effective stress profiles for cases <ol style="list-style-type: none"> before the fill is placed after the fill has been placed 	<i>CO2</i>	<i>PO2</i>	08																					
UNIT - IV																										
7	a)	Discuss the effects of compaction on the properties of soil.	<i>CO2</i>	<i>PO1</i>	06																					
	b)	Differentiate between coefficient of permeability and coefficient of percolation	<i>CO2</i>	<i>PO1</i>	04																					
	c)	In a falling head permeability test the length and area of cross section of soil specimen are 0.17m and $21.8 \times 10^{-4} \text{ m}^2$ respectively. Calculate the time required for the head to drop from 0.25m to 0.10m. The area of cross section of stand pipe is $2 \times 10^{-4} \text{ m}^2$. The sample has three layers with permeabilities $3 \times 10^{-5} \text{ m/s}$ for the first 0.06m, $4 \times 10^{-5} \text{ m/s}$ for the second 0.06m and $6 \times 10^{-5} \text{ m/s}$ for the third 0.05m thickness. Assume the flow is taking place perpendicular to the bedding plane.	<i>CO2</i>	<i>PO2</i>	10																					
		OR																								
8	a)	State Darcy's law and define coefficient of permeability. What are the limitations in the application of Darcy's law to flow through soil media?	<i>CO2</i>	<i>PO1</i>	06																					
	b)	Write short notes on Proctor test (Standard and Modified)	<i>CO2</i>	<i>PO1</i>	04																					
	c)	The following observations were made in a Standard Proctor Test <table border="1" style="margin-left: 20px;"> <tr> <td>Trial No.</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td></tr> <tr> <td>Mass of wet soil (kg)</td><td>1.70</td><td>1.89</td><td>2.03</td><td>1.99</td><td>1.96</td><td>1.92</td></tr> <tr> <td>Water content (%)</td><td>7.7</td><td>11.5</td><td>14.6</td><td>17.5</td><td>19.7</td><td>21.2</td></tr> </table> Volume of mould = 945cc and G=2.67 Determine the maximum dry density and optimum moisture content. Also plot zero air void line.	Trial No.	1	2	3	4	5	6	Mass of wet soil (kg)	1.70	1.89	2.03	1.99	1.96	1.92	Water content (%)	7.7	11.5	14.6	17.5	19.7	21.2	<i>CO2</i>	<i>PO2</i>	10
Trial No.	1	2	3	4	5	6																				
Mass of wet soil (kg)	1.70	1.89	2.03	1.99	1.96	1.92																				
Water content (%)	7.7	11.5	14.6	17.5	19.7	21.2																				

UNIT - V																	
9	a)	List the merits and demerits of direct shear test			CO2	PO1											
	b)	Discuss the factors affecting shear strength in cohesionless soils			CO2	PO1											
	c)	A consolidated undrained test was conducted on a clay sample and the following results were obtained.			CO2	PO2											
<table border="1"> <tr> <td>All round pressure (kPa)</td><td>200</td><td>400</td><td>600</td></tr> <tr> <td>Deviator stress at failure (kPa)</td><td>118</td><td>240</td><td>352</td></tr> <tr> <td>Pore water pressure at failure (kPa)</td><td>110</td><td>220</td><td>320</td></tr> </table> <p>Determine the shear strength parameters with respect to</p> <ol style="list-style-type: none"> Total stress Effective stress 						All round pressure (kPa)	200	400	600	Deviator stress at failure (kPa)	118	240	352	Pore water pressure at failure (kPa)	110	220	320
All round pressure (kPa)	200	400	600														
Deviator stress at failure (kPa)	118	240	352														
Pore water pressure at failure (kPa)	110	220	320														
OR																	
10	a)	List the advantages of triaxial shear test over direct shear test			CO2	PO1											
	b)	On which types of soils unconfined compression test is conducted? Explain with the help of Mohr circles how shear strength parameters are determined in this type of test.			CO2	PO1											
	c)	A cylindrical specimen of a saturated soil fails at an axial stress of 167 kN/m ² in an unconfined compression test. The failure plane makes an angle of 54 degrees with the horizontal. Calculate the shear strength parameters. Verify by graphical method.			CO2	PO2											
