

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22CV4PCHYE

Course: Hydraulic Engineering

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks														
1	a)	Elaborate any four factors affecting Manning's roughness coefficient.	CO1	PO1	4														
	b)	Prove that for most economical rectangular channels, the hydraulic radius when set as half of flow depth provides the least wetted perimeter.	CO1	PO1	6														
	c)	A channel carries a discharge of 5 cumecs with a flow depth 1 m. The side slopes are 1 horizontal to 1 vertical and bed slope 1 in 3520. Compute the bed width and the velocity of flow in the channel. The values of Chezy's coefficient for this channel for different values of hydraulic radius R are as tabulated below.	CO1	PO2	10														
		<table border="1"> <tr> <td>Hydraulic radius R</td> <td>0.7</td> <td>0.8</td> <td>0.9</td> <td>1.0</td> <td>1.1</td> <td>1.2</td> </tr> <tr> <td>Chezy's coefficient</td> <td>34</td> <td>35</td> <td>37</td> <td>38</td> <td>39</td> <td>40</td> </tr> </table>		Hydraulic radius R	0.7	0.8	0.9	1.0	1.1	1.2	Chezy's coefficient	34	35	37	38	39	40		
Hydraulic radius R	0.7	0.8	0.9	1.0	1.1	1.2													
Chezy's coefficient	34	35	37	38	39	40													
		UNIT - II																	
2	a)	List the characteristics of critical flow in an open channel.	CO1	PO1	4														
	b)	Derive the condition for maximum discharge through an open channel for a given specific energy.	CO1	PO1	6														
	c)	A rectangular channel which is laid on a bottom slope of 0.0064 is to carry 20 m ³ /s of water. Determine the width of the channel when the flow is in the critical condition. Take Manning's n = 0.015.	CO1	PO1	10														
		UNIT - III																	
3	a)	Derive the expression for gradually varied flow in a wide rectangular channel using Manning's equation.	CO1	PO1	10														
	b)	A rectangular channel having bottom width 8 m carries a discharge of 80 m ³ /s. Determine the depth conjugate to an initial depth of 0.75 m before the jump. Also determine the loss of energy in the jump.	CO1	PO2	10														
		OR																	

	4	a)	A rectangular channel has a bed width 4 m, bottom slope = 0.0004 and Manning's roughness coefficient 0.02. Normal depth of flow in this channel is 2.0 m. If the channel empties into a pool at the downstream end and the pool elevation is 0.60 m higher than the channel bed elevation at the downstream end, identify the surface profile in the region where the channel meets the pool.	CO1	PO2	10
		b)	Show that the head loss in a hydraulic jump formed in a horizontal rectangular channel may be expressed as $\Delta E = \frac{(V_1 - V_2)^3}{2g(V_1 + V_2)}$	CO1	PO1	10
UNIT - IV						
5	a)		Explain computational fluid dynamics with its advantages.	CO2	PO1	4
	b)		Discuss Dirichlet and Neumann boundary conditions in the context of fluid mechanics.	CO2	PO1	6
	c)		Discuss Navier-Stokes equation and the computational steps required to arrive at its approximate solutions.	CO2	PO1	10
UNIT - V						
6	a)		Explain the law of dimensional homogeneity using Bernoulli's energy equation as an example.	CO3	PO1	5
	b)		Derive an expression for drag force \mathbf{F} on a smooth sphere of diameter \mathbf{D} , moving with a uniform velocity \mathbf{V} in a fluid of mass density ρ and dynamic viscosity μ using Rayleigh's method.	CO3	PO1	7
	c)		The pressure drop ΔP in flow through pipes per unit length is found to depend on the average velocity \mathbf{u} , diameter \mathbf{D} , density of the fluid ρ , and viscosity μ . Using the MLT set of dimensions derive the dimensionless parameters correlating this phenomenon.	CO3	PO1	8
