

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22CV4PCHYE

Course: Hydraulic Engineering

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	UNIT – I			CO	PO	Marks
	1	a)	Illustrate the difference between velocity profile of flow in a wide-shallow and a narrow-deep rectangular channel.	CO 1	PO1	6
		b)	Prove that for most economical rectangular channel section, the bottom width is twice the depth of flow.	CO 1	PO1	6
		c)	An irrigation channel of trapezoidal section, having side slopes 3 horizontal to 2 vertical, is to carry a flow of 10 cumecs on a longitudinal slope of 1 in 5000. The channel is to be lined for which the Manning's friction coefficient $n = 0.012$. Determine the dimensions of the most economic section of the channel.	CO1	PO2	8
	UNIT – II					
	2	a)	Explain momentum and energy correction factor in fluid flow with the help of an appropriate expressions.	CO 1	PO1	6
		b)	For a constant specific energy of 1.8 N.m/N, calculate the maximum discharge that may occur in a rectangular channel 5.0 m wide.	CO 1	PO1	6
		c)	Calculate the possible depths of flow at which a discharge of 26.67 cumec may be carried in a rectangular channel 3.5 m wide with a specific energy equal to 2.74 m.	CO1	PO2	8
	UNIT - III					
	3	a)	A rectangular channel 7.5 m wide has a uniform depth of flow of 2.0 m and has a bed slope of 1 in 3000. If due to weir constructed at the downstream end of the channel, water surface at a section is raised by 0.75 m, determine the water surface slope with respect to horizontal at this section. Assume Manning's $n = 0.02$.	CO 1	PO1	12
		b)	A horizontal rectangular channel 4 m wide carries a discharge of $16 \text{ m}^3/\text{s}$. Determine whether a jump may occur at an initial depth of 0.5 m or not. If a jump occurs, determine the sequent depth to this initial depth. Also determine the energy loss in the jump.	CO 1	PO1	08

OR					
4	a)	Derive an expression for gradually varied flow in a wide rectangular channel using Manning's equation.	<i>CO 1</i>	<i>POI</i>	12
	b)	In a rectangular channel a hydraulic jump occurs at a location where the Froude's number $Fr_1 = 2.5$. Determine the critical depth and head loss in terms of the initial depth Y_1 .	<i>CO 1</i>	<i>POI</i>	08
UNIT – IV					
5	a)	Explain the major differences between experimental, numerical and analytical models.	<i>CO 2</i>	<i>PO2</i>	10
	b)	List the advantages and drawbacks of CFD modelling. Also, elaborate on general steps in CFD model development.	<i>CO 2</i>	<i>POI</i>	10
UNIT – V					
6	a)	Explain the law of dimensional homogeneity using Bernoulli's energy equation as an example.	<i>CO 3</i>	<i>PO2</i>	6
	b)	Briefly comment on conditions for similarity between models and prototype.	<i>CO 3</i>	<i>PO2</i>	6
	c)	Find an expression for drag force F on a smooth sphere of diameter D , moving with a uniform velocity V in a fluid of mass density ρ and dynamic viscosity μ .	<i>CO 3</i>	<i>PO2</i>	8

B.M.S.C.E. - EVEN SEMESTER