

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E

Branch: Civil Engineering

Course Code: 19CV4PCSTA

Course: Structural Analysis

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Show that the bending moment at any section of a three hinged symmetric parabolic arch subjected to uniformly distributed load throughout is zero. **06**

b) A path way of width 1.5 m is constructed by using two suspension cables. The span of suspension cable is 10 m. The path way on either side is connected to the cable by vertical suspenders at a spacing of 1.25 m c/c. The total load on path way is 2.4 KN/m^2 and maximum dip of cable is 1 m. Sketch the cable profile indicating tension in different parts. Also find the length of the cable. **14**

UNIT - II

2 a) Analyze the beam shown in Fig. 1 for maximum slope, maximum deflection and deflection under 36 kN load using conjugate beam method. Take $EI = 50000 \text{ KN-m}^2$. **10**

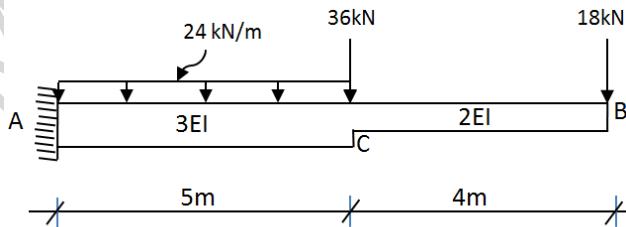
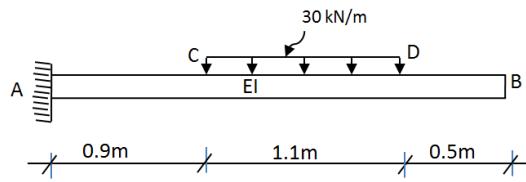
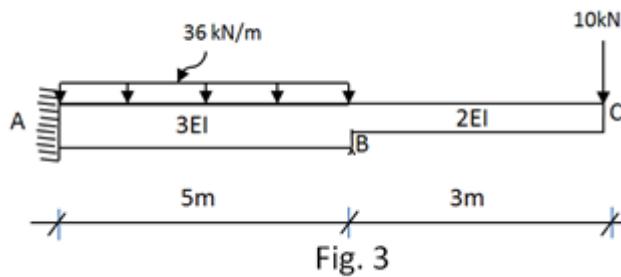
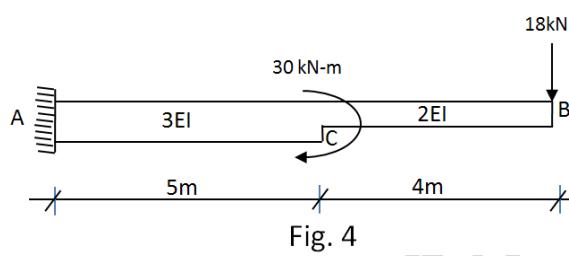


Fig. 1

b) Find the maximum deflection and maximum slope for the beam shown in Fig. 2 using moment area method. Take $EI = 20000 \text{ KN-m}^2$. **10**


Fig. 2

OR

3 a) Find the slope and deflection at the free end 'C' of the beam loaded as shown in Fig. 3 using conjugate beam method. Take $E=200 \text{ GPa}$, $I=1.2 \times 10^8 \text{ mm}^4$ **10**

b) Find the maximum slope and deflection for the cantilever beam loaded as shown in Fig. 4 using moment area method. Take $E=200$ GPa, $I=1.2 \times 10^8$ mm 4 10

UNIT - III

4 a) Analyse the propped cantilever beam shown in Fig. 5 for the reactions by consistent deformation method. 06

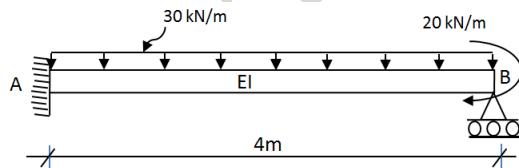


Fig. 5

b) Using the theorem of three moments analyze the continuous beam shown in Fig. 6. Take $E=200$ KN/mm 2 , $I=1.8 \times 10^8$ mm 4 . Draw BMD and elastic curve. 14

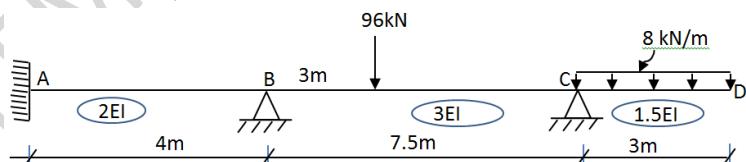


Fig. 6

UNIT - IV

5 a) Derive an equation for strain energy stored in a member due to bending. 05

b) Determine the horizontal and vertical displacement at the point C of the rigid frame shown in Fig. 7 using Castiglano's theorem. Take $EI= 12000$ KN-m 2 . 15

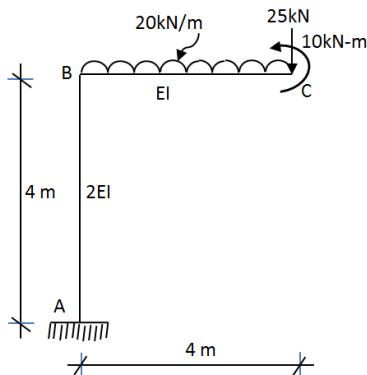


Fig. 7

OR

6 a) State and explain Castigliano's first theorem. 05
 b) A simply supported beam ACB with varying cross section is loaded as shown in Fig. 8. Determine deflection at 'C' using Castigliano's theorem. Take $EI = 12000 \text{ KN-m}^2$. 15

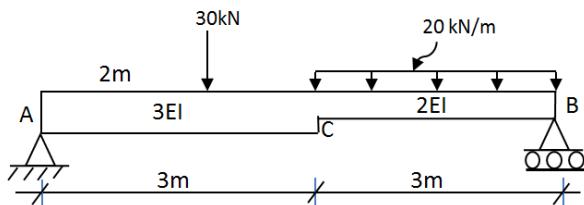


Fig. 8

UNIT - V

7 Determine the vertical and horizontal deflection at the point 'C' of the truss shown in Fig. 9 using unit load method. Assume area of cross-section of all members as 600 mm^2 . Take $E = 200 \text{ GPa}$. 20

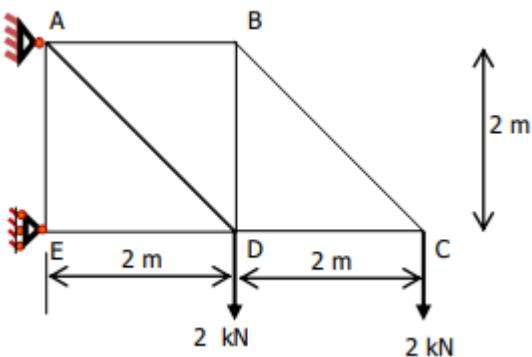


Fig. 9
