

B.M.S. College of Engineering, Bengaluru-560019

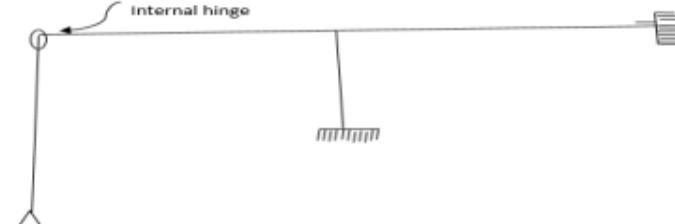
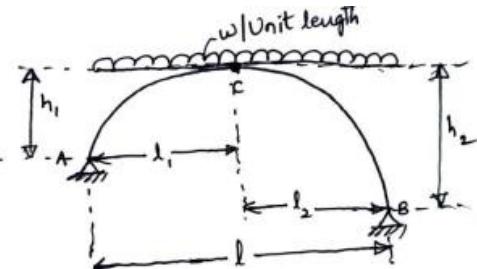
Autonomous Institute Affiliated to VTU

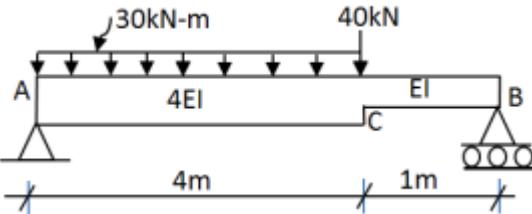
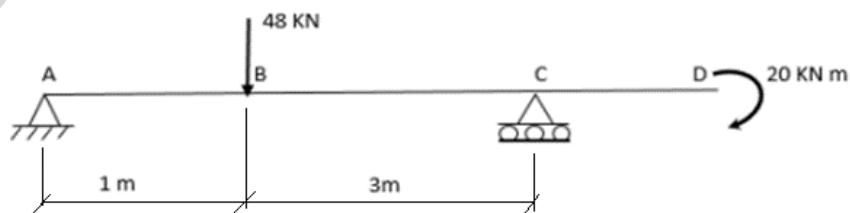
January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Civil Engineering



Duration: 3 hrs.



Course Code: 19CV4PCSTA

Max Marks: 100

Course: STRUCTURAL ANALYSIS

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain statically determinate and statically indeterminate structures with examples	<i>CO1</i>	<i>PO</i> 1	06
	b)	Determine the static and kinematic indeterminacies of structures shown in fig.1&2 below.	<i>CO1</i>	<i>PO1,</i> 2	08
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	 Fig-1				
	 Fig-2				
	c)	A three hinged parabolic arch of span 'l' has its abutments at depths h_1 and h_2 below the crown. The arch carries uniformly distributed load of w per unit length over the whole span. Determine the horizontal thrust, at each support. (Ref Fig-3).	<i>CO1</i>	<i>PO1,</i> 2	06
Fig-3					

OR					
2	a)	A cable is supported from two points A and B which are 80 m apart. B is 6 m below A, the lowest point on the cable is 10 m below B. The cable supports a udl of intensity 24 kN/m over the entire span. Calculate maximum tension in the cable. If the cable passes over a roller on the top of pier at the end A and anchored, find the forces transmitted to the pier. Assume anchor cable makes 32^0 with horizontal.	CO2	PO1, 2	08
	b)	A three hinged parabolic arch of span 40 m and central rise 10 m, carries an udl of 30 kN/m over the left quarter span. Besides two vertical point loads of 20 kN each act at distances of 20 m and 30 m from left support. Find the reactions, normal thrust, radial shear and bending moment at 8 m from left support.	CO2	PO1, 2	12
UNIT - II					
3	a)	A simply supported beam of span 10 m carries a point load of 20 kN at 4m from left support and a point load of 40 kN at 3m from right support. Find the deflection under the 40 kN load using Macaulay's method. Assume EI is constant.	CO2	PO1, 2	10
	b)	Determine the slope and deflection at point 'C' for the beam shown in fig 4 below using conjugate beam method. Take $E=200$ GPa, $I=1.2 \times 10^8$ mm ⁴	CO2	PO1, 2	10
Fig-4					
OR					
4	a)	Calculate the deflection at B and D for the beam shown in Fig 5 by Macaulay's method. Assume EI is constant. Assume CD as 1m.	CO2	PO1, 2	10
	b)				
Fig-5					
	b)	Find the maximum deflection and maximum slope for the beam shown in Fig 6 using moment area method. Take $E=200$ GPa, $I=1.2 \times 10^8$ mm ⁴	CO2	PO1, 2	10

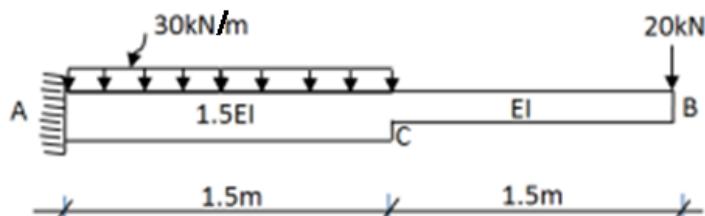


Fig-6

UNIT - III

5 a) Analyze the propped cantilever shown in fig 7 below for the reactions by consistent deformation method

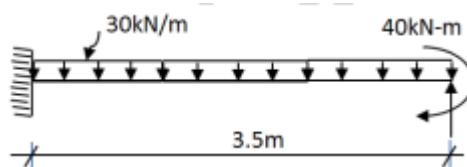


Fig-7

b) Using the theorem of three moments analyze the continuous beam shown in fig-8 below. Take $E=200 \text{ KN/mm}^2$, $I=1.8 \times 10^8 \text{ mm}^4$. Draw BMD and elastic curve.

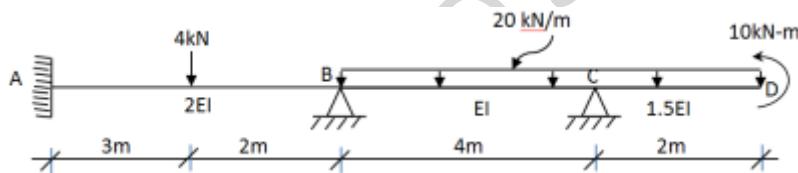


Fig-8

OR

6 a) In propped cantilever beam shown in fig 9 support B yields by 2mm during loading. Analyze the beam using consistent deformation method to find the support reaction. Assume $EI=4 \times 10^4 \text{ kN-m}^2$

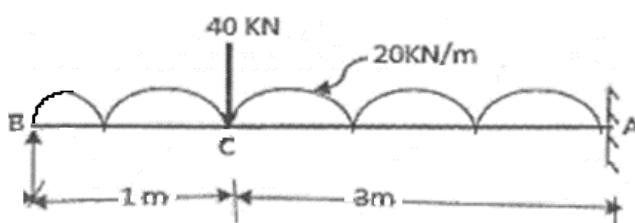


Fig-9

b) Analyze the continuous beam shown in fig 10 using Clapeyron's theorem of three moments. The support at A sinks by 2mm and B sinks by 3mm. Take $E=200 \text{ GPa}$, $I=2 \times 10^8$. Sketch the BMD and SFD.

CO2 PO1, 2 **08**

CO2 PO1, 2 **12**

CO2 PO1, 2 **08**

CO2 PO1, 2 **12**

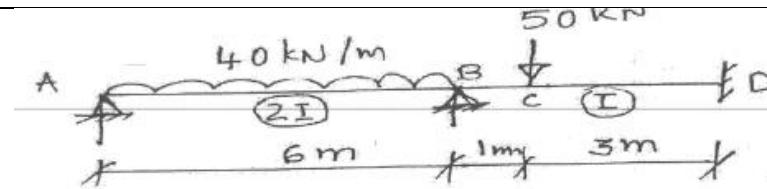


Fig-10

UNIT - IV

7 a) State and explain Castigliano's first theorem.

CO3 PO1 05

b) A non-prismatic simply supported beam ACB is loaded as shown in fig 11 below. Determine deflection below the load by using strain energy method. Take $I = 5000 \text{ cm}^4$, $E = 2 \times 10^5 \text{ N/mm}^2$.

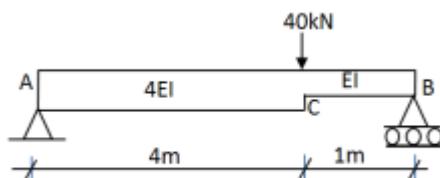


Fig-11

OR

8 a) Derive the expression for strain energy due to bending.

CO3 PO1 05

b) Determine the displacement at the point C of the rigid frame shown in fig 12 using Castigliano's first theorem. Take $EI = 10 \times 10^3 \text{ kN-m}^2$

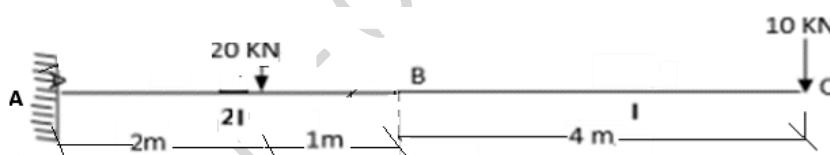


Fig-12

UNIT - V

9 a) Determine the vertical displacement at the point C of the pin jointed frame shown in figure Fig13 using unit load method. Take $E=200 \text{ GPa}$, Take area of tension members as 8 cm^2 and area of compression members as 5 cm^2

CO3 PO1, 2 10

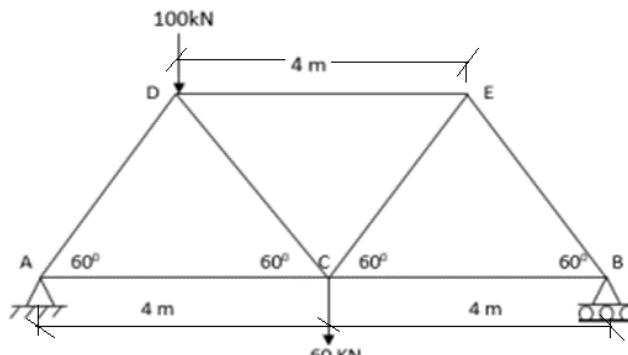


Fig-13

	b)	A simply supported beam of span 6 m carries an udl of 8 kN/m over entire span along with a point load of 12 kN acting at 2m from the left end. Determine the deflection at a point located 3/4th span from left end, using unit load method. Assume EI is constant.	CO3	PO1, 2	10
		OR			
10	a)	Determine the deflection at D for the beam shown in Fig 14 using unit load method.	CO3	PO1, 2	10
		<p style="text-align: center;">Fig-14</p>			

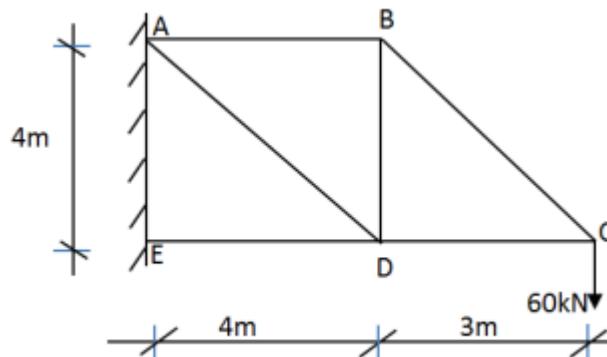


Fig15
